Re-org debug codes
This commit is contained in:
parent
0138e71cf2
commit
17955123a0
@ -1,8 +1,8 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16
|
||||
# python exps/LFNA/basic-same.py --srange 1-999 --env_version v2 --hidden_dim
|
||||
# python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/LFNA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
@ -58,7 +58,6 @@ def main(args):
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
print(model)
|
||||
model.analyze_weights()
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
@ -85,6 +84,7 @@ def main(args):
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
@ -1,7 +1,7 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 64
|
||||
# python exps/LFNA/lfna-debug-hpnet.py --env_version v1 --hidden_dim 16 --meta_batch 64 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
@ -26,7 +26,6 @@ from xlayers import super_core, trunc_normal_
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
|
||||
# from lfna_models import HyperNet_VX as HyperNet
|
||||
from lfna_models import HyperNet
|
||||
|
||||
|
||||
@ -36,19 +35,31 @@ def main(args):
|
||||
model = get_model(**model_kwargs)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
logger.log("There are {:} weights.".format(model.numel()))
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim)
|
||||
total_bar = env_info["total"] - 1
|
||||
task_embeds = []
|
||||
for i in range(env_info["total"]):
|
||||
task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim)))
|
||||
for task_embed in task_embeds:
|
||||
trunc_normal_(task_embed, std=0.02)
|
||||
hypernet = HyperNet(
|
||||
shape_container, args.hidden_dim, args.task_dim, len(dynamic_env)
|
||||
)
|
||||
hypernet = hypernet.to(args.device)
|
||||
|
||||
parameters = list(hypernet.parameters()) + task_embeds
|
||||
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
|
||||
logger.log(
|
||||
"{:} There are {:} weights in the base-model.".format(
|
||||
time_string(), model.numel()
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"{:} There are {:} weights in the meta-model.".format(
|
||||
time_string(), hypernet.numel()
|
||||
)
|
||||
)
|
||||
|
||||
for i in range(len(dynamic_env)):
|
||||
env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device)
|
||||
env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device)
|
||||
logger.log("{:} Convert to device-{:} done".format(time_string(), args.device))
|
||||
|
||||
optimizer = torch.optim.Adam(
|
||||
hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
@ -59,8 +70,8 @@ def main(args):
|
||||
)
|
||||
|
||||
# LFNA meta-training
|
||||
loss_meter = AverageMeter()
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
last_success_epoch = 0
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
@ -70,65 +81,65 @@ def main(args):
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
# One Epoch
|
||||
loss_meter = AverageMeter()
|
||||
for istep in range(args.per_epoch_step):
|
||||
losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
cur_time = random.randint(0, len(dynamic_env) - 1)
|
||||
cur_container = hypernet(cur_time)
|
||||
cur_x = env_info["{:}-x".format(cur_time)]
|
||||
cur_y = env_info["{:}-y".format(cur_time)]
|
||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||||
|
||||
limit_bar = float(iepoch + 1) / args.epochs * total_bar
|
||||
limit_bar = min(max(32, int(limit_bar)), total_bar)
|
||||
losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
cur_time = random.randint(0, limit_bar)
|
||||
cur_task_embed = task_embeds[cur_time]
|
||||
cur_container = hypernet(cur_task_embed)
|
||||
cur_x = env_info["{:}-x".format(cur_time)]
|
||||
cur_y = env_info["{:}-y".format(cur_time)]
|
||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, cur_dataset.y)
|
||||
|
||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, cur_dataset.y)
|
||||
|
||||
losses.append(loss)
|
||||
|
||||
final_loss = torch.stack(losses).mean()
|
||||
final_loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(parameters, 1.0)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
loss_meter.update(final_loss.item())
|
||||
if iepoch % 200 == 0:
|
||||
logger.log(
|
||||
head_str
|
||||
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}, limit={:}".format(
|
||||
loss_meter.avg,
|
||||
loss_meter.val,
|
||||
min(lr_scheduler.get_last_lr()),
|
||||
len(losses),
|
||||
limit_bar,
|
||||
)
|
||||
losses.append(loss)
|
||||
final_loss = torch.stack(losses).mean()
|
||||
final_loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
loss_meter.update(final_loss.item())
|
||||
success, best_score = hypernet.save_best(-loss_meter.avg)
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
logger.log(
|
||||
head_str
|
||||
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
||||
loss_meter.avg,
|
||||
loss_meter.val,
|
||||
min(lr_scheduler.get_last_lr()),
|
||||
len(losses),
|
||||
)
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
{
|
||||
"hypernet": hypernet.state_dict(),
|
||||
"task_embeds": task_embeds,
|
||||
"lr_scheduler": lr_scheduler.state_dict(),
|
||||
"iepoch": iepoch,
|
||||
},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
loss_meter.reset()
|
||||
save_checkpoint(
|
||||
{
|
||||
"hypernet": hypernet.state_dict(),
|
||||
"lr_scheduler": lr_scheduler.state_dict(),
|
||||
"iepoch": iepoch,
|
||||
},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
print(model)
|
||||
print(hypernet)
|
||||
hypernet.load_best()
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(0, env_info["total"]):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
future_container = hypernet(task_embeds[idx])
|
||||
future_container = hypernet(idx)
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = model.forward_with_container(
|
||||
@ -152,7 +163,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-tall-hpnet",
|
||||
default="./outputs/lfna-synthetic/lfna-debug-hpnet",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -171,7 +182,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
default=0.01,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -180,12 +191,30 @@ if __name__ == "__main__":
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=100,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_epoch_step",
|
||||
type=int,
|
||||
default=20,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
@ -39,10 +39,10 @@ class HyperNet(super_core.SuperModule):
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_embeding + task_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[layer_embeding * 4] * 3,
|
||||
hidden_dims=[(layer_embeding + task_embedding) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=0.1,
|
||||
dropout=0.2,
|
||||
)
|
||||
import pdb
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user