Re-org debug codes
This commit is contained in:
		| @@ -1,8 +1,8 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 | # python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||||
| # python exps/LFNA/basic-same.py --srange 1-999 --env_version v2 --hidden_dim | # python exps/LFNA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -58,7 +58,6 @@ def main(args): | |||||||
|         # build model |         # build model | ||||||
|         model = get_model(**model_kwargs) |         model = get_model(**model_kwargs) | ||||||
|         print(model) |         print(model) | ||||||
|         model.analyze_weights() |  | ||||||
|         # build optimizer |         # build optimizer | ||||||
|         optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) |         optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) | ||||||
|         criterion = torch.nn.MSELoss() |         criterion = torch.nn.MSELoss() | ||||||
| @@ -85,6 +84,7 @@ def main(args): | |||||||
|                 best_loss = loss.item() |                 best_loss = loss.item() | ||||||
|                 best_param = copy.deepcopy(model.state_dict()) |                 best_param = copy.deepcopy(model.state_dict()) | ||||||
|         model.load_state_dict(best_param) |         model.load_state_dict(best_param) | ||||||
|  |         model.analyze_weights() | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|             train_metric(preds, historical_y) |             train_metric(preds, historical_y) | ||||||
|         train_results = train_metric.get_info() |         train_results = train_metric.get_info() | ||||||
|   | |||||||
| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 64 | # python exps/LFNA/lfna-debug-hpnet.py --env_version v1 --hidden_dim 16 --meta_batch 64 --device cuda | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -26,7 +26,6 @@ from xlayers import super_core, trunc_normal_ | |||||||
| 
 | 
 | ||||||
| from lfna_utils import lfna_setup, train_model, TimeData | from lfna_utils import lfna_setup, train_model, TimeData | ||||||
| 
 | 
 | ||||||
| # from lfna_models import HyperNet_VX as HyperNet |  | ||||||
| from lfna_models import HyperNet | from lfna_models import HyperNet | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @@ -36,19 +35,31 @@ def main(args): | |||||||
|     model = get_model(**model_kwargs) |     model = get_model(**model_kwargs) | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
| 
 | 
 | ||||||
|     logger.log("There are {:} weights.".format(model.numel())) |  | ||||||
| 
 |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |     shape_container = model.get_w_container().to_shape_container() | ||||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) |     hypernet = HyperNet( | ||||||
|     total_bar = env_info["total"] - 1 |         shape_container, args.hidden_dim, args.task_dim, len(dynamic_env) | ||||||
|     task_embeds = [] |     ) | ||||||
|     for i in range(env_info["total"]): |     hypernet = hypernet.to(args.device) | ||||||
|         task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim))) |  | ||||||
|     for task_embed in task_embeds: |  | ||||||
|         trunc_normal_(task_embed, std=0.02) |  | ||||||
| 
 | 
 | ||||||
|     parameters = list(hypernet.parameters()) + task_embeds |     logger.log( | ||||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) |         "{:} There are {:} weights in the base-model.".format( | ||||||
|  |             time_string(), model.numel() | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     logger.log( | ||||||
|  |         "{:} There are {:} weights in the meta-model.".format( | ||||||
|  |             time_string(), hypernet.numel() | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     for i in range(len(dynamic_env)): | ||||||
|  |         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) | ||||||
|  |         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) | ||||||
|  |     logger.log("{:} Convert to device-{:} done".format(time_string(), args.device)) | ||||||
|  | 
 | ||||||
|  |     optimizer = torch.optim.Adam( | ||||||
|  |         hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||||
|  |     ) | ||||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( |     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|         optimizer, |         optimizer, | ||||||
|         milestones=[ |         milestones=[ | ||||||
| @@ -59,8 +70,8 @@ def main(args): | |||||||
|     ) |     ) | ||||||
| 
 | 
 | ||||||
|     # LFNA meta-training |     # LFNA meta-training | ||||||
|     loss_meter = AverageMeter() |  | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |     per_epoch_time, start_time = AverageMeter(), time.time() | ||||||
|  |     last_success_epoch = 0 | ||||||
|     for iepoch in range(args.epochs): |     for iepoch in range(args.epochs): | ||||||
| 
 | 
 | ||||||
|         need_time = "Time Left: {:}".format( |         need_time = "Time Left: {:}".format( | ||||||
| @@ -70,14 +81,13 @@ def main(args): | |||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||||
|             + need_time |             + need_time | ||||||
|         ) |         ) | ||||||
| 
 |         # One Epoch | ||||||
|         limit_bar = float(iepoch + 1) / args.epochs * total_bar |         loss_meter = AverageMeter() | ||||||
|         limit_bar = min(max(32, int(limit_bar)), total_bar) |         for istep in range(args.per_epoch_step): | ||||||
|             losses = [] |             losses = [] | ||||||
|             for ibatch in range(args.meta_batch): |             for ibatch in range(args.meta_batch): | ||||||
|             cur_time = random.randint(0, limit_bar) |                 cur_time = random.randint(0, len(dynamic_env) - 1) | ||||||
|             cur_task_embed = task_embeds[cur_time] |                 cur_container = hypernet(cur_time) | ||||||
|             cur_container = hypernet(cur_task_embed) |  | ||||||
|                 cur_x = env_info["{:}-x".format(cur_time)] |                 cur_x = env_info["{:}-x".format(cur_time)] | ||||||
|                 cur_y = env_info["{:}-y".format(cur_time)] |                 cur_y = env_info["{:}-y".format(cur_time)] | ||||||
|                 cur_dataset = TimeData(cur_time, cur_x, cur_y) |                 cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||||
| @@ -87,48 +97,49 @@ def main(args): | |||||||
|                 loss = criterion(preds, cur_dataset.y) |                 loss = criterion(preds, cur_dataset.y) | ||||||
| 
 | 
 | ||||||
|                 losses.append(loss) |                 losses.append(loss) | ||||||
| 
 |  | ||||||
|             final_loss = torch.stack(losses).mean() |             final_loss = torch.stack(losses).mean() | ||||||
|             final_loss.backward() |             final_loss.backward() | ||||||
|         torch.nn.utils.clip_grad_norm_(parameters, 1.0) |  | ||||||
|             optimizer.step() |             optimizer.step() | ||||||
|             lr_scheduler.step() |             lr_scheduler.step() | ||||||
| 
 |  | ||||||
|             loss_meter.update(final_loss.item()) |             loss_meter.update(final_loss.item()) | ||||||
|         if iepoch % 200 == 0: |         success, best_score = hypernet.save_best(-loss_meter.avg) | ||||||
|  |         if success: | ||||||
|  |             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||||
|  |             last_success_epoch = iepoch | ||||||
|  |         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||||
|  |             logger.log("Early stop at {:}".format(iepoch)) | ||||||
|  |             break | ||||||
|         logger.log( |         logger.log( | ||||||
|             head_str |             head_str | ||||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}, limit={:}".format( |             + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||||
|                 loss_meter.avg, |                 loss_meter.avg, | ||||||
|                 loss_meter.val, |                 loss_meter.val, | ||||||
|                 min(lr_scheduler.get_last_lr()), |                 min(lr_scheduler.get_last_lr()), | ||||||
|                 len(losses), |                 len(losses), | ||||||
|                     limit_bar, |  | ||||||
|             ) |             ) | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
|         save_checkpoint( |         save_checkpoint( | ||||||
|             { |             { | ||||||
|                 "hypernet": hypernet.state_dict(), |                 "hypernet": hypernet.state_dict(), | ||||||
|                     "task_embeds": task_embeds, |  | ||||||
|                 "lr_scheduler": lr_scheduler.state_dict(), |                 "lr_scheduler": lr_scheduler.state_dict(), | ||||||
|                 "iepoch": iepoch, |                 "iepoch": iepoch, | ||||||
|             }, |             }, | ||||||
|             logger.path("model"), |             logger.path("model"), | ||||||
|             logger, |             logger, | ||||||
|         ) |         ) | ||||||
|             loss_meter.reset() |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |         per_epoch_time.update(time.time() - start_time) | ||||||
|         start_time = time.time() |         start_time = time.time() | ||||||
| 
 | 
 | ||||||
|     print(model) |     print(model) | ||||||
|     print(hypernet) |     print(hypernet) | ||||||
|  |     hypernet.load_best() | ||||||
|  | 
 | ||||||
|     w_container_per_epoch = dict() |     w_container_per_epoch = dict() | ||||||
|     for idx in range(0, env_info["total"]): |     for idx in range(0, env_info["total"]): | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |  | ||||||
|         future_x = env_info["{:}-x".format(idx)] |         future_x = env_info["{:}-x".format(idx)] | ||||||
|         future_y = env_info["{:}-y".format(idx)] |         future_y = env_info["{:}-y".format(idx)] | ||||||
|         future_container = hypernet(task_embeds[idx]) |         future_container = hypernet(idx) | ||||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() |         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|             future_y_hat = model.forward_with_container( |             future_y_hat = model.forward_with_container( | ||||||
| @@ -152,7 +163,7 @@ if __name__ == "__main__": | |||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--save_dir", |         "--save_dir", | ||||||
|         type=str, |         type=str, | ||||||
|         default="./outputs/lfna-synthetic/lfna-tall-hpnet", |         default="./outputs/lfna-synthetic/lfna-debug-hpnet", | ||||||
|         help="The checkpoint directory.", |         help="The checkpoint directory.", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
| @@ -171,7 +182,7 @@ if __name__ == "__main__": | |||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--init_lr", |         "--init_lr", | ||||||
|         type=float, |         type=float, | ||||||
|         default=0.1, |         default=0.01, | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
| @@ -180,12 +191,30 @@ if __name__ == "__main__": | |||||||
|         default=64, |         default=64, | ||||||
|         help="The batch size for the meta-model", |         help="The batch size for the meta-model", | ||||||
|     ) |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--early_stop_thresh", | ||||||
|  |         type=int, | ||||||
|  |         default=100, | ||||||
|  |         help="The maximum epochs for early stop.", | ||||||
|  |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--epochs", |         "--epochs", | ||||||
|         type=int, |         type=int, | ||||||
|         default=2000, |         default=2000, | ||||||
|         help="The total number of epochs.", |         help="The total number of epochs.", | ||||||
|     ) |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--per_epoch_step", | ||||||
|  |         type=int, | ||||||
|  |         default=20, | ||||||
|  |         help="The total number of epochs.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--device", | ||||||
|  |         type=str, | ||||||
|  |         default="cpu", | ||||||
|  |         help="", | ||||||
|  |     ) | ||||||
|     # Random Seed |     # Random Seed | ||||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") |     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||||
|     args = parser.parse_args() |     args = parser.parse_args() | ||||||
| @@ -39,10 +39,10 @@ class HyperNet(super_core.SuperModule): | |||||||
|             config=dict(model_type="dual_norm_mlp"), |             config=dict(model_type="dual_norm_mlp"), | ||||||
|             input_dim=layer_embeding + task_embedding, |             input_dim=layer_embeding + task_embedding, | ||||||
|             output_dim=max(self._numel_per_layer), |             output_dim=max(self._numel_per_layer), | ||||||
|             hidden_dims=[layer_embeding * 4] * 3, |             hidden_dims=[(layer_embeding + task_embedding) * 2] * 3, | ||||||
|             act_cls="gelu", |             act_cls="gelu", | ||||||
|             norm_cls="layer_norm_1d", |             norm_cls="layer_norm_1d", | ||||||
|             dropout=0.1, |             dropout=0.2, | ||||||
|         ) |         ) | ||||||
|         import pdb |         import pdb | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user