Make nice visualization
This commit is contained in:
		
							
								
								
									
										27
									
								
								lib/datasets/synthetic_example.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								lib/datasets/synthetic_example.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,27 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
|  | ||||
| from .math_base_funcs import DynamicQuadraticFunc | ||||
| from .synthetic_utils import ConstantGenerator, SinGenerator | ||||
| from .synthetic_env import SyntheticDEnv | ||||
|  | ||||
|  | ||||
| def create_example_v1(timestamps=50, num_per_task=5000): | ||||
|     mean_generator = SinGenerator(num=timestamps) | ||||
|     std_generator = SinGenerator(num=timestamps, min_amplitude=0.5, max_amplitude=0.5) | ||||
|     std_generator.set_transform(lambda x: x + 1) | ||||
|     dynamic_env = SyntheticDEnv( | ||||
|         [mean_generator], [[std_generator]], num_per_task=num_per_task | ||||
|     ) | ||||
|     function = DynamicQuadraticFunc() | ||||
|     function_param = dict() | ||||
|     function_param[0] = SinGenerator( | ||||
|         num=timestamps, num_sin_phase=4, phase_shift=1.0, max_amplitude=1.0 | ||||
|     ) | ||||
|     function_param[1] = ConstantGenerator(constant=0.9) | ||||
|     function_param[2] = SinGenerator( | ||||
|         num=timestamps, num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9 | ||||
|     ) | ||||
|     function.set(function_param) | ||||
|     return dynamic_env, function | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										152
									
								
								notebooks/TOT/synthetic-visualize-env.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										152
									
								
								notebooks/TOT/synthetic-visualize-env.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,152 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "id": "filled-multiple", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "The root path: /Users/xuanyidong/Desktop/AutoDL-Projects\n", | ||||
|       "The library path: /Users/xuanyidong/Desktop/AutoDL-Projects/lib\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "import os, sys\n", | ||||
|     "import torch\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "import numpy as np\n", | ||||
|     "import matplotlib\n", | ||||
|     "from matplotlib import cm\n", | ||||
|     "matplotlib.use(\"agg\")\n", | ||||
|     "import matplotlib.pyplot as plt\n", | ||||
|     "import matplotlib.ticker as ticker\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||
|     "root_dir = (Path(__file__).parent / \"..\").resolve()\n", | ||||
|     "lib_dir = (root_dir / \"lib\").resolve()\n", | ||||
|     "print(\"The root path: {:}\".format(root_dir))\n", | ||||
|     "print(\"The library path: {:}\".format(lib_dir))\n", | ||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||
|     "if str(lib_dir) not in sys.path:\n", | ||||
|     "    sys.path.insert(0, str(lib_dir))\n", | ||||
|     "\n", | ||||
|     "from datasets import ConstantGenerator, SinGenerator, SyntheticDEnv\n", | ||||
|     "from datasets import DynamicQuadraticFunc\n", | ||||
|     "from datasets.synthetic_example import create_example_v1" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "id": "detected-second", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "def draw_fig(save_dir, timestamp, xaxis, yaxis):\n", | ||||
|     "    save_path = save_dir / '{:04d}'.format(timestamp)\n", | ||||
|     "    # print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))\n", | ||||
|     "    dpi, width, height = 40, 1500, 1500\n", | ||||
|     "    figsize = width / float(dpi), height / float(dpi)\n", | ||||
|     "    LabelSize, LegendFontsize, font_gap = 80, 80, 5\n", | ||||
|     "\n", | ||||
|     "    fig = plt.figure(figsize=figsize)\n", | ||||
|     "    \n", | ||||
|     "    cur_ax = fig.add_subplot(1, 1, 1)\n", | ||||
|     "    cur_ax.scatter(xaxis, yaxis, color=\"k\", s=10, alpha=0.9, label=\"Timestamp={:02d}\".format(timestamp))\n", | ||||
|     "    cur_ax.set_xlabel(\"X\", fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_ylabel(\"f(X)\", rotation=0, fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_xlim(-6, 6)\n", | ||||
|     "    cur_ax.set_ylim(-40, 40)\n", | ||||
|     "    for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        tick.label.set_rotation(10)\n", | ||||
|     "    for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        \n", | ||||
|     "    plt.legend(loc=1, fontsize=LegendFontsize)\n", | ||||
|     "    fig.savefig(str(save_path) + '.pdf', dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n", | ||||
|     "    fig.savefig(str(save_path) + '.png', dpi=dpi, bbox_inches=\"tight\", format=\"png\")\n", | ||||
|     "    plt.close(\"all\")\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "def visualize_env(save_dir):\n", | ||||
|     "    save_dir.mkdir(parents=True, exist_ok=True)\n", | ||||
|     "    dynamic_env, function = create_example_v1(100, num_per_task=500)\n", | ||||
|     "    \n", | ||||
|     "    additional_xaxis = np.arange(-6, 6, 0.1)\n", | ||||
|     "    for timestamp, dataset in dynamic_env:\n", | ||||
|     "        num = dataset.shape[0]\n", | ||||
|     "        # timeaxis = (torch.zeros(num) + timestamp).numpy()\n", | ||||
|     "        xaxis = dataset[:,0].numpy()\n", | ||||
|     "        xaxis = np.concatenate((additional_xaxis, xaxis))\n", | ||||
|     "        # compute the ground truth\n", | ||||
|     "        function.set_timestamp(timestamp)\n", | ||||
|     "        yaxis = function(xaxis)\n", | ||||
|     "        draw_fig(save_dir, timestamp, xaxis, yaxis)\n", | ||||
|     "\n", | ||||
|     "home_dir = Path.home()\n", | ||||
|     "desktop_dir = home_dir / 'Desktop'\n", | ||||
|     "vis_save_dir = desktop_dir / 'vis-synthetic'\n", | ||||
|     "visualize_env(vis_save_dir)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 3, | ||||
|    "id": "rapid-uruguay", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "ffmpeg -y -i /Users/xuanyidong/Desktop/vis-synthetic/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k /Users/xuanyidong/Desktop/vis-synthetic/vis.mp4\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "data": { | ||||
|       "text/plain": [ | ||||
|        "0" | ||||
|       ] | ||||
|      }, | ||||
|      "execution_count": 3, | ||||
|      "metadata": {}, | ||||
|      "output_type": "execute_result" | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "# Plot the data\n", | ||||
|     "cmd = 'ffmpeg -y -i {:}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {:}/vis.mp4'.format(vis_save_dir, vis_save_dir)\n", | ||||
|     "print(cmd)\n", | ||||
|     "os.system(cmd)" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.8.8" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 5 | ||||
| } | ||||
							
								
								
									
										251
									
								
								synthetic-env.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										251
									
								
								synthetic-env.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,251 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "id": "filled-multiple", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "The root path: /Users/xuanyidong\n", | ||||
|       "The library path: /Users/xuanyidong/lib\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "ename": "AssertionError", | ||||
|      "evalue": "/Users/xuanyidong/lib does not exist", | ||||
|      "output_type": "error", | ||||
|      "traceback": [ | ||||
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||||
|       "\u001b[0;31mAssertionError\u001b[0m                            Traceback (most recent call last)", | ||||
|       "\u001b[0;32m~/Desktop/AutoDL-Projects\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     15\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"The root path: {:}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     16\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"The library path: {:}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 17\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlib_dir\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"{:} does not exist\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     18\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     19\u001b[0m     \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minsert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;31mAssertionError\u001b[0m: /Users/xuanyidong/lib does not exist" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "import os, sys\n", | ||||
|     "import torch\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "import numpy as np\n", | ||||
|     "import matplotlib\n", | ||||
|     "from matplotlib import cm\n", | ||||
|     "# matplotlib.use(\"agg\")\n", | ||||
|     "import matplotlib.pyplot as plt\n", | ||||
|     "import matplotlib.ticker as ticker\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||
|     "root_dir = (Path(__file__).parent / \"..\").resolve()\n", | ||||
|     "lib_dir = (root_dir / \"lib\").resolve()\n", | ||||
|     "print(\"The root path: {:}\".format(root_dir))\n", | ||||
|     "print(\"The library path: {:}\".format(lib_dir))\n", | ||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||
|     "if str(lib_dir) not in sys.path:\n", | ||||
|     "    sys.path.insert(0, str(lib_dir))\n", | ||||
|     "\n", | ||||
|     "from datasets import ConstantGenerator, SinGenerator, SyntheticDEnv\n", | ||||
|     "from datasets import DynamicQuadraticFunc\n", | ||||
|     "from datasets.synthetic_example import create_example_v1" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "detected-second", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "def visualize_env():\n", | ||||
|     "    \n", | ||||
|     "    dpi, width, height = 10, 800, 400\n", | ||||
|     "    figsize = width / float(dpi), height / float(dpi)\n", | ||||
|     "    LabelSize, LegendFontsize, font_gap = 40, 40, 5\n", | ||||
|     "\n", | ||||
|     "    fig = plt.figure(figsize=figsize)\n", | ||||
|     "\n", | ||||
|     "    dynamic_env, function = create_example_v1(100, num_per_task=250)\n", | ||||
|     "    \n", | ||||
|     "    timeaxis, xaxis, yaxis = [], [], []\n", | ||||
|     "    for timestamp, dataset in dynamic_env:\n", | ||||
|     "        num = dataset.shape[0]\n", | ||||
|     "        timeaxis.append(torch.zeros(num) + timestamp)\n", | ||||
|     "        xaxis.append(dataset[:,0])\n", | ||||
|     "        # compute the ground truth\n", | ||||
|     "        function.set_timestamp(timestamp)\n", | ||||
|     "        yaxis.append(function(dataset[:,0]))\n", | ||||
|     "    timeaxis = torch.cat(timeaxis).numpy()\n", | ||||
|     "    xaxis = torch.cat(xaxis).numpy()\n", | ||||
|     "    yaxis = torch.cat(yaxis).numpy()\n", | ||||
|     "\n", | ||||
|     "    cur_ax = fig.add_subplot(2, 1, 1)\n", | ||||
|     "    cur_ax.scatter(timeaxis, xaxis, color=\"k\", linestyle=\"-\", alpha=0.9, label=None)\n", | ||||
|     "    cur_ax.set_xlabel(\"Time\", fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_ylabel(\"X\", rotation=0, fontsize=LabelSize)\n", | ||||
|     "    for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        tick.label.set_rotation(10)\n", | ||||
|     "    for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "    \n", | ||||
|     "    cur_ax = fig.add_subplot(2, 1, 2)\n", | ||||
|     "    cur_ax.scatter(timeaxis, yaxis, color=\"k\", linestyle=\"-\", alpha=0.9, label=None)\n", | ||||
|     "    cur_ax.set_xlabel(\"Time\", fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_ylabel(\"Y\", rotation=0, fontsize=LabelSize)\n", | ||||
|     "    for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        tick.label.set_rotation(10)\n", | ||||
|     "    for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "    plt.show()\n", | ||||
|     "\n", | ||||
|     "visualize_env()" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "supreme-basis", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# def optimize_fn(xs, ys, test_sets):\n", | ||||
|     "#     xs = torch.FloatTensor(xs).view(-1, 1)\n", | ||||
|     "#     ys = torch.FloatTensor(ys).view(-1, 1)\n", | ||||
|     "    \n", | ||||
|     "#     model = SuperSequential(\n", | ||||
|     "#         SuperMLPv1(1, 10, 20, torch.nn.ReLU),\n", | ||||
|     "#         SuperMLPv1(20, 10, 1, torch.nn.ReLU)\n", | ||||
|     "#     )\n", | ||||
|     "#     optimizer = torch.optim.Adam(\n", | ||||
|     "#         model.parameters(),\n", | ||||
|     "#         lr=0.01, weight_decay=1e-4, amsgrad=True\n", | ||||
|     "#     )\n", | ||||
|     "#     for _iter in range(100):\n", | ||||
|     "#         preds = model(ys)\n", | ||||
|     "\n", | ||||
|     "#         optimizer.zero_grad()\n", | ||||
|     "#         loss = torch.nn.functional.mse_loss(preds, ys)\n", | ||||
|     "#         loss.backward()\n", | ||||
|     "#         optimizer.step()\n", | ||||
|     "        \n", | ||||
|     "#     with torch.no_grad():\n", | ||||
|     "#         answers = []\n", | ||||
|     "#         for test_set in test_sets:\n", | ||||
|     "#             test_set = torch.FloatTensor(test_set).view(-1, 1)\n", | ||||
|     "#             preds = model(test_set).view(-1).numpy()\n", | ||||
|     "#             answers.append(preds.tolist())\n", | ||||
|     "#     return answers\n", | ||||
|     "\n", | ||||
|     "# def f(x):\n", | ||||
|     "#     return np.cos( 0.5 * x + x * x)\n", | ||||
|     "\n", | ||||
|     "# def get_data(mode):\n", | ||||
|     "#     dataset = SynAdaptiveEnv(mode=mode)\n", | ||||
|     "#     times, xs, ys = [], [], []\n", | ||||
|     "#     for i, (_, t, x) in enumerate(dataset):\n", | ||||
|     "#         times.append(t)\n", | ||||
|     "#         xs.append(x)\n", | ||||
|     "#     dataset.set_transform(f)\n", | ||||
|     "#     for i, (_, _, y) in enumerate(dataset):\n", | ||||
|     "#         ys.append(y)\n", | ||||
|     "#     return times, xs, ys\n", | ||||
|     "\n", | ||||
|     "# def visualize_syn(save_path):\n", | ||||
|     "#     save_dir = (save_path / '..').resolve()\n", | ||||
|     "#     save_dir.mkdir(parents=True, exist_ok=True)\n", | ||||
|     "    \n", | ||||
|     "#     dpi, width, height = 40, 2000, 900\n", | ||||
|     "#     figsize = width / float(dpi), height / float(dpi)\n", | ||||
|     "#     LabelSize, LegendFontsize, font_gap = 40, 40, 5\n", | ||||
|     "    \n", | ||||
|     "#     fig = plt.figure(figsize=figsize)\n", | ||||
|     "    \n", | ||||
|     "#     times, xs, ys = get_data(None)\n", | ||||
|     "    \n", | ||||
|     "#     def draw_ax(cur_ax, xaxis, yaxis, xlabel, ylabel,\n", | ||||
|     "#                 alpha=0.1, color='k', linestyle='-', legend=None, plot_only=False):\n", | ||||
|     "#         if legend is not None:\n", | ||||
|     "#             cur_ax.plot(xaxis[:1], yaxis[:1], color=color, label=legend)\n", | ||||
|     "#         cur_ax.plot(xaxis, yaxis, color=color, linestyle=linestyle, alpha=alpha, label=None)\n", | ||||
|     "#         if not plot_only:\n", | ||||
|     "#             cur_ax.set_xlabel(xlabel, fontsize=LabelSize)\n", | ||||
|     "#             cur_ax.set_ylabel(ylabel, rotation=0, fontsize=LabelSize)\n", | ||||
|     "#             for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "#                 tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "#                 tick.label.set_rotation(10)\n", | ||||
|     "#             for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "#                 tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "    \n", | ||||
|     "#     cur_ax = fig.add_subplot(2, 1, 1)\n", | ||||
|     "#     draw_ax(cur_ax, times, xs, \"time\", \"x\", alpha=1.0, legend=None)\n", | ||||
|     "\n", | ||||
|     "#     cur_ax = fig.add_subplot(2, 1, 2)\n", | ||||
|     "#     draw_ax(cur_ax, times, ys, \"time\", \"y\", alpha=0.1, legend=\"ground truth\")\n", | ||||
|     "    \n", | ||||
|     "#     train_times, train_xs, train_ys = get_data(\"train\")\n", | ||||
|     "#     draw_ax(cur_ax, train_times, train_ys, None, None, alpha=1.0, color='r', legend=None, plot_only=True)\n", | ||||
|     "    \n", | ||||
|     "#     valid_times, valid_xs, valid_ys = get_data(\"valid\")\n", | ||||
|     "#     draw_ax(cur_ax, valid_times, valid_ys, None, None, alpha=1.0, color='g', legend=None, plot_only=True)\n", | ||||
|     "    \n", | ||||
|     "#     test_times, test_xs, test_ys = get_data(\"test\")\n", | ||||
|     "#     draw_ax(cur_ax, test_times, test_ys, None, None, alpha=1.0, color='b', legend=None, plot_only=True)\n", | ||||
|     "    \n", | ||||
|     "#     # optimize MLP models\n", | ||||
|     "# #     [train_preds, valid_preds, test_preds] = optimize_fn(train_xs, train_ys, [train_xs, valid_xs, test_xs])\n", | ||||
|     "# #     draw_ax(cur_ax, train_times, train_preds, None, None,\n", | ||||
|     "# #             alpha=1.0, linestyle='--', color='r', legend=\"MLP\", plot_only=True)\n", | ||||
|     "# #     import pdb; pdb.set_trace()\n", | ||||
|     "# #     draw_ax(cur_ax, valid_times, valid_preds, None, None,\n", | ||||
|     "# #             alpha=1.0, linestyle='--', color='g', legend=None, plot_only=True)\n", | ||||
|     "# #     draw_ax(cur_ax, test_times, test_preds, None, None,\n", | ||||
|     "# #             alpha=1.0, linestyle='--', color='b', legend=None, plot_only=True)\n", | ||||
|     "\n", | ||||
|     "#     plt.legend(loc=1, fontsize=LegendFontsize)\n", | ||||
|     "\n", | ||||
|     "#     fig.savefig(save_path, dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n", | ||||
|     "#     plt.close(\"all\")\n", | ||||
|     "#     # plt.show()" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "shared-envelope", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Visualization\n", | ||||
|     "# home_dir = Path.home()\n", | ||||
|     "# desktop_dir = home_dir / 'Desktop'\n", | ||||
|     "# print('The Desktop is at: {:}'.format(desktop_dir))\n", | ||||
|     "# visualize_syn(desktop_dir / 'tot-synthetic-v0.pdf')" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.8.8" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 5 | ||||
| } | ||||
							
								
								
									
										145
									
								
								synthetic-visualize-env.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										145
									
								
								synthetic-visualize-env.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,145 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "id": "filled-multiple", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "The root path: /Users/xuanyidong\n", | ||||
|       "The library path: /Users/xuanyidong/lib\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "ename": "AssertionError", | ||||
|      "evalue": "/Users/xuanyidong/lib does not exist", | ||||
|      "output_type": "error", | ||||
|      "traceback": [ | ||||
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||||
|       "\u001b[0;31mAssertionError\u001b[0m                            Traceback (most recent call last)", | ||||
|       "\u001b[0;32m~/Desktop/AutoDL-Projects\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     15\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"The root path: {:}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     16\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"The library path: {:}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 17\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlib_dir\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"{:} does not exist\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     18\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     19\u001b[0m     \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minsert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlib_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;31mAssertionError\u001b[0m: /Users/xuanyidong/lib does not exist" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "import os, sys\n", | ||||
|     "import torch\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "import numpy as np\n", | ||||
|     "import matplotlib\n", | ||||
|     "from matplotlib import cm\n", | ||||
|     "matplotlib.use(\"agg\")\n", | ||||
|     "import matplotlib.pyplot as plt\n", | ||||
|     "import matplotlib.ticker as ticker\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||
|     "root_dir = (Path(__file__).parent / \"..\").resolve()\n", | ||||
|     "lib_dir = (root_dir / \"lib\").resolve()\n", | ||||
|     "print(\"The root path: {:}\".format(root_dir))\n", | ||||
|     "print(\"The library path: {:}\".format(lib_dir))\n", | ||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||
|     "if str(lib_dir) not in sys.path:\n", | ||||
|     "    sys.path.insert(0, str(lib_dir))\n", | ||||
|     "\n", | ||||
|     "from datasets import ConstantGenerator, SinGenerator, SyntheticDEnv\n", | ||||
|     "from datasets import DynamicQuadraticFunc\n", | ||||
|     "from datasets.synthetic_example import create_example_v1" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "detected-second", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "def draw_fig(save_dir, timestamp, xaxis, yaxis):\n", | ||||
|     "    save_path = save_dir / '{:04d}'.format(timestamp)\n", | ||||
|     "    # print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))\n", | ||||
|     "    dpi, width, height = 40, 1500, 1500\n", | ||||
|     "    figsize = width / float(dpi), height / float(dpi)\n", | ||||
|     "    LabelSize, LegendFontsize, font_gap = 80, 80, 5\n", | ||||
|     "\n", | ||||
|     "    fig = plt.figure(figsize=figsize)\n", | ||||
|     "    \n", | ||||
|     "    cur_ax = fig.add_subplot(1, 1, 1)\n", | ||||
|     "    cur_ax.scatter(xaxis, yaxis, color=\"k\", s=10, alpha=0.9, label=\"Timestamp={:02d}\".format(timestamp))\n", | ||||
|     "    cur_ax.set_xlabel(\"X\", fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_ylabel(\"f(X)\", rotation=0, fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_xlim(-6, 6)\n", | ||||
|     "    cur_ax.set_ylim(-40, 40)\n", | ||||
|     "    for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        tick.label.set_rotation(10)\n", | ||||
|     "    for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        \n", | ||||
|     "    plt.legend(loc=1, fontsize=LegendFontsize)\n", | ||||
|     "    fig.savefig(str(save_path) + '.pdf', dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n", | ||||
|     "    fig.savefig(str(save_path) + '.png', dpi=dpi, bbox_inches=\"tight\", format=\"png\")\n", | ||||
|     "    plt.close(\"all\")\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "def visualize_env(save_dir):\n", | ||||
|     "    save_dir.mkdir(parents=True, exist_ok=True)\n", | ||||
|     "    dynamic_env, function = create_example_v1(100, num_per_task=500)\n", | ||||
|     "    \n", | ||||
|     "    additional_xaxis = np.arange(-6, 6, 0.1)\n", | ||||
|     "    for timestamp, dataset in dynamic_env:\n", | ||||
|     "        num = dataset.shape[0]\n", | ||||
|     "        # timeaxis = (torch.zeros(num) + timestamp).numpy()\n", | ||||
|     "        xaxis = dataset[:,0].numpy()\n", | ||||
|     "        xaxis = np.concatenate((additional_xaxis, xaxis))\n", | ||||
|     "        # compute the ground truth\n", | ||||
|     "        function.set_timestamp(timestamp)\n", | ||||
|     "        yaxis = function(xaxis)\n", | ||||
|     "        draw_fig(save_dir, timestamp, xaxis, yaxis)\n", | ||||
|     "\n", | ||||
|     "home_dir = Path.home()\n", | ||||
|     "desktop_dir = home_dir / 'Desktop'\n", | ||||
|     "vis_save_dir = desktop_dir / 'vis-synthetic'\n", | ||||
|     "visualize_env(vis_save_dir)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "greatest-pepper", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Plot the data\n", | ||||
|     "cmd = 'ffmpeg -y -i {:}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {:}/vis.mp4'.format(vis_save_dir, vis_save_dir)\n", | ||||
|     "print(cmd)\n", | ||||
|     "os.system(cmd)" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.8.8" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 5 | ||||
| } | ||||
		Reference in New Issue
	
	Block a user