Update visualization codes for NATS-Bench
This commit is contained in:
		
							
								
								
									
										180
									
								
								exps/NATS-Bench/draw-fig7.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								exps/NATS-Bench/draw-fig7.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,180 @@ | ||||
| ############################################################### | ||||
| # NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf)           # | ||||
| # The code to draw Figure 7 in our paper.                     # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||
| ############################################################### | ||||
| # Usage: python exps/NATS-Bench/draw-fig7.py                  # | ||||
| ############################################################### | ||||
| import os, gc, sys, time, torch, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def get_valid_test_acc(api, arch, dataset): | ||||
|   is_size_space = api.search_space_name == 'size' | ||||
|   if dataset == 'cifar10': | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       test_acc = xinfo['test-accuracy'] | ||||
|       xinfo = api.get_more_info(arch, dataset='cifar10-valid', hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_acc = xinfo['valid-accuracy'] | ||||
|   else: | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_acc = xinfo['valid-accuracy'] | ||||
|       test_acc = xinfo['test-accuracy'] | ||||
|   return valid_acc, test_acc, 'validation = {:.2f}, test = {:.2f}\n'.format(valid_acc, test_acc) | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-WARM0.3'): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   seeds = [777, 888, 999] | ||||
|   print('\n[fetch data] from {:} on {:}'.format(search_space, dataset)) | ||||
|   if search_space == 'tss': | ||||
|     alg2name['GDAS'] = 'gdas-affine0_BN0-None' | ||||
|     alg2name['RSPS'] = 'random-affine0_BN0-None' | ||||
|     alg2name['DARTS (1st)'] = 'darts-v1-affine0_BN0-None' | ||||
|     alg2name['DARTS (2nd)'] = 'darts-v2-affine0_BN0-None' | ||||
|     alg2name['ENAS'] = 'enas-affine0_BN0-None' | ||||
|     alg2name['SETN'] = 'setn-affine0_BN0-None' | ||||
|   else: | ||||
|     alg2name['channel-wise interpolation'] = 'tas-affine0_BN0-AWD0.001{:}'.format(suffix) | ||||
|     alg2name['masking + Gumbel-Softmax'] = 'mask_gumbel-affine0_BN0-AWD0.001{:}'.format(suffix) | ||||
|     alg2name['masking + sampling'] = 'mask_rl-affine0_BN0-AWD0.0{:}'.format(suffix) | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'seed-{:}-last-info.pth') | ||||
|   alg2data = OrderedDict() | ||||
|   for alg, path in alg2path.items(): | ||||
|     alg2data[alg], ok_num = [], 0 | ||||
|     for seed in seeds: | ||||
|       xpath = path.format(seed) | ||||
|       if os.path.isfile(xpath): | ||||
|         ok_num += 1 | ||||
|       else: | ||||
|         print('This is an invalid path : {:}'.format(xpath)) | ||||
|         continue | ||||
|       data = torch.load(xpath, map_location=torch.device('cpu')) | ||||
|       try: | ||||
|         data = torch.load(data['last_checkpoint'], map_location=torch.device('cpu')) | ||||
|       except: | ||||
|         xpath = str(data['last_checkpoint']).split('E100-') | ||||
|         if len(xpath) == 2 and os.path.isfile(xpath[0] + xpath[1]): | ||||
|           xpath = xpath[0] + xpath[1] | ||||
|         elif 'fbv2' in str(data['last_checkpoint']): | ||||
|           xpath = str(data['last_checkpoint']).replace('fbv2', 'mask_gumbel') | ||||
|         elif 'tunas' in str(data['last_checkpoint']): | ||||
|           xpath = str(data['last_checkpoint']).replace('tunas', 'mask_rl') | ||||
|         else: | ||||
|           raise ValueError('Invalid path: {:}'.format(data['last_checkpoint'])) | ||||
|         data = torch.load(xpath, map_location=torch.device('cpu')) | ||||
|       alg2data[alg].append(data['genotypes']) | ||||
|     print('This algorithm : {:} has {:} valid ckps.'.format(alg, ok_num)) | ||||
|     assert ok_num > 0, 'Must have at least 1 valid ckps.' | ||||
|   return alg2data | ||||
|  | ||||
|  | ||||
| y_min_s = {('cifar10', 'tss'): 90, | ||||
|            ('cifar10', 'sss'): 92, | ||||
|            ('cifar100', 'tss'): 65, | ||||
|            ('cifar100', 'sss'): 65, | ||||
|            ('ImageNet16-120', 'tss'): 36, | ||||
|            ('ImageNet16-120', 'sss'): 40} | ||||
|  | ||||
| y_max_s = {('cifar10', 'tss'): 94.5, | ||||
|            ('cifar10', 'sss'): 93.3, | ||||
|            ('cifar100', 'tss'): 72, | ||||
|            ('cifar100', 'sss'): 70, | ||||
|            ('ImageNet16-120', 'tss'): 44, | ||||
|            ('ImageNet16-120', 'sss'): 46} | ||||
|  | ||||
| name2label = {'cifar10': 'CIFAR-10', | ||||
|               'cifar100': 'CIFAR-100', | ||||
|               'ImageNet16-120': 'ImageNet-16-120'} | ||||
|  | ||||
| name2suffix = {('sss', 'warm'): '-WARM0.3', | ||||
|                ('sss', 'none'): '-WARMNone', | ||||
|                ('tss', 'none')  : None, | ||||
|                ('tss', None)  : None} | ||||
|  | ||||
| def visualize_curve(api, vis_save_dir, search_space, suffix): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   dpi, width, height = 250, 5200, 1400 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 16, 16 | ||||
|  | ||||
|   def sub_plot_fn(ax, dataset): | ||||
|     print('{:} plot {:10s}'.format(time_string(), dataset)) | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset, suffix=name2suffix[(search_space, suffix)]) | ||||
|     alg2accuracies = OrderedDict() | ||||
|     epochs = 100 | ||||
|     colors = ['b', 'g', 'c', 'm', 'y', 'r'] | ||||
|     ax.set_xlim(0, epochs) | ||||
|     # ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) | ||||
|     for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|       xs, accuracies = [], [] | ||||
|       for iepoch in range(epochs + 1): | ||||
|         try: | ||||
|           structures, accs = [_[iepoch-1] for _ in data], [] | ||||
|         except: | ||||
|           raise ValueError('This alg {:} on {:} has invalid checkpoints.'.format(alg, dataset)) | ||||
|         for structure in structures: | ||||
|           info = api.get_more_info(structure, dataset=dataset, hp=90 if api.search_space_name == 'size' else 200, is_random=False) | ||||
|           accs.append(info['test-accuracy']) | ||||
|         accuracies.append(sum(accs)/len(accs)) | ||||
|         xs.append(iepoch) | ||||
|       alg2accuracies[alg] = accuracies | ||||
|       ax.plot(xs, accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||
|       ax.set_xlabel('The searching epoch', fontsize=LabelSize) | ||||
|       ax.set_ylabel('Test accuracy on {:}'.format(name2label[dataset]), fontsize=LabelSize) | ||||
|       ax.set_title('Searching results on {:}'.format(name2label[dataset]), fontsize=LabelSize+4) | ||||
|       structures, valid_accs, test_accs = [_[epochs-1] for _ in data], [], [] | ||||
|       print('{:} plot alg : {:} -- final {:} architectures.'.format(time_string(), alg, len(structures))) | ||||
|       for arch in structures: | ||||
|         valid_acc, test_acc, _ = get_valid_test_acc(api, arch, dataset) | ||||
|         test_accs.append(test_acc) | ||||
|         valid_accs.append(valid_acc) | ||||
|       print('{:} plot alg : {:} -- validation: {:.2f}$\pm${:.2f} -- test: {:.2f}$\pm${:.2f}'.format( | ||||
|         time_string(), alg, np.mean(valid_accs), np.std(valid_accs), np.mean(test_accs), np.std(test_accs))) | ||||
|     ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||
|   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   for dataset, ax in zip(datasets, axs): | ||||
|     sub_plot_fn(ax, dataset) | ||||
|     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) | ||||
|   save_path = (vis_save_dir / '{:}-ws-{:}-curve.png'.format(search_space, suffix)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api_tss = create(None, 'tss', fast_mode=True, verbose=False) | ||||
|   visualize_curve(api_tss, save_dir, 'tss', None) | ||||
|  | ||||
|   api_sss = create(None, 'sss', fast_mode=True, verbose=False) | ||||
|   visualize_curve(api_sss, save_dir, 'sss', 'warm') | ||||
|   visualize_curve(api_sss, save_dir, 'sss', 'none') | ||||
		Reference in New Issue
	
	Block a user