|  |  |  | @@ -5,9 +5,9 @@ | 
		
	
		
			
				|  |  |  |  | # required to install hpbandster ################################## | 
		
	
		
			
				|  |  |  |  | # pip install hpbandster         ################################## | 
		
	
		
			
				|  |  |  |  | ################################################################### | 
		
	
		
			
				|  |  |  |  | # python exps/algos-v2/bohb.py --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 | 
		
	
		
			
				|  |  |  |  | # OMP_NUM_THREADS=4 python exps/algos-v2/bohb.py --search_space tss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1 | 
		
	
		
			
				|  |  |  |  | ################################################################### | 
		
	
		
			
				|  |  |  |  | import os, sys, time, random, argparse | 
		
	
		
			
				|  |  |  |  | import os, sys, time, random, argparse, collections | 
		
	
		
			
				|  |  |  |  | from copy import deepcopy | 
		
	
		
			
				|  |  |  |  | from pathlib import Path | 
		
	
		
			
				|  |  |  |  | import torch | 
		
	
	
		
			
				
					
					|  |  |  | @@ -17,7 +17,7 @@ from config_utils import load_config | 
		
	
		
			
				|  |  |  |  | from datasets     import get_datasets, SearchDataset | 
		
	
		
			
				|  |  |  |  | from procedures   import prepare_seed, prepare_logger | 
		
	
		
			
				|  |  |  |  | from log_utils    import AverageMeter, time_string, convert_secs2time | 
		
	
		
			
				|  |  |  |  | from nas_201_api  import NASBench201API as API | 
		
	
		
			
				|  |  |  |  | from nas_201_api  import NASBench201API, NASBench301API | 
		
	
		
			
				|  |  |  |  | from models       import CellStructure, get_search_spaces | 
		
	
		
			
				|  |  |  |  | # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018 | 
		
	
		
			
				|  |  |  |  | import ConfigSpace | 
		
	
	
		
			
				
					
					|  |  |  | @@ -38,7 +38,7 @@ def get_topology_config_space(search_space, max_nodes=4): | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def get_size_config_space(search_space): | 
		
	
		
			
				|  |  |  |  |   cs = ConfigSpace.ConfigurationSpace() | 
		
	
		
			
				|  |  |  |  | 	import pdb; pdb.set_trace() | 
		
	
		
			
				|  |  |  |  |   import pdb; pdb.set_trace() | 
		
	
		
			
				|  |  |  |  |   #edge2index   = {} | 
		
	
		
			
				|  |  |  |  |   for i in range(1, max_nodes): | 
		
	
		
			
				|  |  |  |  |     for j in range(i): | 
		
	
	
		
			
				
					
					|  |  |  | @@ -63,52 +63,21 @@ def config2topology_func(max_nodes=4): | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | class MyWorker(Worker): | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs): | 
		
	
		
			
				|  |  |  |  |   def __init__(self, *args, convert_func=None, dataset=None, api=None, **kwargs): | 
		
	
		
			
				|  |  |  |  |     super().__init__(*args, **kwargs) | 
		
	
		
			
				|  |  |  |  |     self.convert_func   = convert_func | 
		
	
		
			
				|  |  |  |  |     self._dataname      = dataname | 
		
	
		
			
				|  |  |  |  |     self._nas_bench     = nas_bench | 
		
	
		
			
				|  |  |  |  |     self.time_budget    = time_budget | 
		
	
		
			
				|  |  |  |  |     self.seen_archs     = [] | 
		
	
		
			
				|  |  |  |  |     self.sim_cost_time  = 0 | 
		
	
		
			
				|  |  |  |  |     self.real_cost_time = 0 | 
		
	
		
			
				|  |  |  |  |     self.is_end         = False | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   def get_the_best(self): | 
		
	
		
			
				|  |  |  |  |     assert len(self.seen_archs) > 0 | 
		
	
		
			
				|  |  |  |  |     best_index, best_acc = -1, None | 
		
	
		
			
				|  |  |  |  |     for arch_index in self.seen_archs: | 
		
	
		
			
				|  |  |  |  |       info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True) | 
		
	
		
			
				|  |  |  |  |       vacc = info['valid-accuracy'] | 
		
	
		
			
				|  |  |  |  |       if best_acc is None or best_acc < vacc: | 
		
	
		
			
				|  |  |  |  |         best_acc = vacc | 
		
	
		
			
				|  |  |  |  |         best_index = arch_index | 
		
	
		
			
				|  |  |  |  |     assert best_index != -1 | 
		
	
		
			
				|  |  |  |  |     return best_index | 
		
	
		
			
				|  |  |  |  |     self._dataset       = dataset | 
		
	
		
			
				|  |  |  |  |     self._api           = api | 
		
	
		
			
				|  |  |  |  |     self.total_times    = [] | 
		
	
		
			
				|  |  |  |  |     self.trajectory     = [] | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   def compute(self, config, budget, **kwargs): | 
		
	
		
			
				|  |  |  |  |     start_time = time.time() | 
		
	
		
			
				|  |  |  |  |     structure  = self.convert_func( config ) | 
		
	
		
			
				|  |  |  |  |     arch_index = self._nas_bench.query_index_by_arch( structure ) | 
		
	
		
			
				|  |  |  |  |     info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True) | 
		
	
		
			
				|  |  |  |  |     cur_time   = info['train-all-time'] + info['valid-per-time'] | 
		
	
		
			
				|  |  |  |  |     cur_vacc   = info['valid-accuracy'] | 
		
	
		
			
				|  |  |  |  |     self.real_cost_time += (time.time() - start_time) | 
		
	
		
			
				|  |  |  |  |     if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end: | 
		
	
		
			
				|  |  |  |  |       self.sim_cost_time += cur_time | 
		
	
		
			
				|  |  |  |  |       self.seen_archs.append( arch_index ) | 
		
	
		
			
				|  |  |  |  |       return ({'loss': 100 - float(cur_vacc), | 
		
	
		
			
				|  |  |  |  |                'info': {'seen-arch'     : len(self.seen_archs), | 
		
	
		
			
				|  |  |  |  |                         'sim-test-time' : self.sim_cost_time, | 
		
	
		
			
				|  |  |  |  |                         'current-arch'  : arch_index} | 
		
	
		
			
				|  |  |  |  |             }) | 
		
	
		
			
				|  |  |  |  |     else: | 
		
	
		
			
				|  |  |  |  |       self.is_end = True | 
		
	
		
			
				|  |  |  |  |       return ({'loss': 100, | 
		
	
		
			
				|  |  |  |  |                'info': {'seen-arch'     : len(self.seen_archs), | 
		
	
		
			
				|  |  |  |  |                         'sim-test-time' : self.sim_cost_time, | 
		
	
		
			
				|  |  |  |  |                         'current-arch'  : None} | 
		
	
		
			
				|  |  |  |  |             }) | 
		
	
		
			
				|  |  |  |  |     arch  = self.convert_func( config ) | 
		
	
		
			
				|  |  |  |  |     accuracy, latency, time_cost, total_time = self._api.simulate_train_eval(arch, self._dataset, iepoch=int(budget)-1, hp='12') | 
		
	
		
			
				|  |  |  |  |     self.trajectory.append((accuracy, arch)) | 
		
	
		
			
				|  |  |  |  |     self.total_times.append(total_time) | 
		
	
		
			
				|  |  |  |  |     return ({'loss': 100 - accuracy, | 
		
	
		
			
				|  |  |  |  |              'info': self._api.query_index_by_arch(arch)}) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def main(xargs, api): | 
		
	
	
		
			
				
					
					|  |  |  | @@ -117,12 +86,13 @@ def main(xargs, api): | 
		
	
		
			
				|  |  |  |  |   logger = prepare_logger(args) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   logger.log('{:} use api : {:}'.format(time_string(), api)) | 
		
	
		
			
				|  |  |  |  |   api.reset_time() | 
		
	
		
			
				|  |  |  |  |   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | 
		
	
		
			
				|  |  |  |  |   if xargs.search_space == 'tss': | 
		
	
		
			
				|  |  |  |  |   	cs = get_topology_config_space(xargs.max_nodes, search_space) | 
		
	
		
			
				|  |  |  |  |   	config2structure = config2topology_func(xargs.max_nodes) | 
		
	
		
			
				|  |  |  |  |   	cs = get_topology_config_space(search_space) | 
		
	
		
			
				|  |  |  |  |   	config2structure = config2topology_func() | 
		
	
		
			
				|  |  |  |  |   else: | 
		
	
		
			
				|  |  |  |  |   	cs = get_size_config_space(xargs.max_nodes, search_space) | 
		
	
		
			
				|  |  |  |  |     cs = get_size_config_space(search_space) | 
		
	
		
			
				|  |  |  |  |     import pdb; pdb.set_trace() | 
		
	
		
			
				|  |  |  |  |    | 
		
	
		
			
				|  |  |  |  |   hb_run_id = '0' | 
		
	
	
		
			
				
					
					|  |  |  | @@ -133,41 +103,41 @@ def main(xargs, api): | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   workers = [] | 
		
	
		
			
				|  |  |  |  |   for i in range(num_workers): | 
		
	
		
			
				|  |  |  |  |     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i) | 
		
	
		
			
				|  |  |  |  |     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataset=xargs.dataset, api=api, run_id=hb_run_id, id=i) | 
		
	
		
			
				|  |  |  |  |     w.run(background=True) | 
		
	
		
			
				|  |  |  |  |     workers.append(w) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   start_time = time.time() | 
		
	
		
			
				|  |  |  |  |   bohb = BOHB(configspace=cs, | 
		
	
		
			
				|  |  |  |  |             run_id=hb_run_id, | 
		
	
		
			
				|  |  |  |  |             eta=3, min_budget=12, max_budget=200, | 
		
	
		
			
				|  |  |  |  |             nameserver=ns_host, | 
		
	
		
			
				|  |  |  |  |             nameserver_port=ns_port, | 
		
	
		
			
				|  |  |  |  |             num_samples=xargs.num_samples, | 
		
	
		
			
				|  |  |  |  |             random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, | 
		
	
		
			
				|  |  |  |  |             ping_interval=10, min_bandwidth=xargs.min_bandwidth) | 
		
	
		
			
				|  |  |  |  |   bohb = BOHB(configspace=cs, run_id=hb_run_id, | 
		
	
		
			
				|  |  |  |  |       eta=3, min_budget=1, max_budget=12, | 
		
	
		
			
				|  |  |  |  |       nameserver=ns_host, | 
		
	
		
			
				|  |  |  |  |       nameserver_port=ns_port, | 
		
	
		
			
				|  |  |  |  |       num_samples=xargs.num_samples, | 
		
	
		
			
				|  |  |  |  |       random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, | 
		
	
		
			
				|  |  |  |  |       ping_interval=10, min_bandwidth=xargs.min_bandwidth) | 
		
	
		
			
				|  |  |  |  |    | 
		
	
		
			
				|  |  |  |  |   results = bohb.run(xargs.n_iters, min_n_workers=num_workers) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   bohb.shutdown(shutdown_workers=True) | 
		
	
		
			
				|  |  |  |  |   NS.shutdown() | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   real_cost_time = time.time() - start_time | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   id2config = results.get_id2config_mapping() | 
		
	
		
			
				|  |  |  |  |   incumbent = results.get_incumbent_id() | 
		
	
		
			
				|  |  |  |  |   logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time)) | 
		
	
		
			
				|  |  |  |  |   best_arch = config2structure( id2config[incumbent]['config'] ) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   info = nas_bench.query_by_arch(best_arch, '200') | 
		
	
		
			
				|  |  |  |  |   if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | 
		
	
		
			
				|  |  |  |  |   else           : logger.log('{:}'.format(info)) | 
		
	
		
			
				|  |  |  |  |   logger.log('-'*100) | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs))) | 
		
	
		
			
				|  |  |  |  |   logger.close() | 
		
	
		
			
				|  |  |  |  |   return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time | 
		
	
		
			
				|  |  |  |  |   # print('There are {:} runs.'.format(len(results.get_all_runs()))) | 
		
	
		
			
				|  |  |  |  |   # workers[0].total_times | 
		
	
		
			
				|  |  |  |  |   # workers[0].trajectory | 
		
	
		
			
				|  |  |  |  |   current_best_index = [] | 
		
	
		
			
				|  |  |  |  |   for idx in range(len(workers[0].trajectory)): | 
		
	
		
			
				|  |  |  |  |     trajectory = workers[0].trajectory[:idx+1] | 
		
	
		
			
				|  |  |  |  |     arch = max(trajectory, key=lambda x: x[0])[1] | 
		
	
		
			
				|  |  |  |  |     current_best_index.append(api.query_index_by_arch(arch)) | 
		
	
		
			
				|  |  |  |  |    | 
		
	
		
			
				|  |  |  |  |   best_arch = max(workers[0].trajectory, key=lambda x: x[0])[1] | 
		
	
		
			
				|  |  |  |  |   logger.log('Best found configuration: {:} within {:.3f} s'.format(best_arch, workers[0].total_times[-1])) | 
		
	
		
			
				|  |  |  |  |   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | 
		
	
		
			
				|  |  |  |  |   logger.log('{:}'.format(info)) | 
		
	
		
			
				|  |  |  |  |   logger.log('-'*100) | 
		
	
		
			
				|  |  |  |  |   logger.close() | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |   return logger.log_dir, current_best_index, workers[0].total_times | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | if __name__ == '__main__': | 
		
	
	
		
			
				
					
					|  |  |  | @@ -185,8 +155,8 @@ if __name__ == '__main__': | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--bandwidth_factor', default=3,   type=int, nargs='?', help='factor multiplied to the bandwidth') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--n_iters',          default=300, type=int, nargs='?', help='number of iterations for optimization method') | 
		
	
		
			
				|  |  |  |  |   # log | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--save_dir',           type=str,  default='./output/search', help='Folder to save checkpoints and log.') | 
		
	
		
			
				|  |  |  |  |   parser.add_argument('--rand_seed',          type=int,  default=-1, help='manual seed') | 
		
	
		
			
				|  |  |  |  |   args = parser.parse_args() | 
		
	
		
			
				|  |  |  |  |    | 
		
	
		
			
				|  |  |  |  |   if args.search_space == 'tss': | 
		
	
	
		
			
				
					
					|  |  |  |   |