Update REA, REINFORCE, RANDOM, and BOHB
This commit is contained in:
		
							
								
								
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -123,3 +123,5 @@ scripts-search/l2s-algos
 | 
			
		||||
TEMP-L.sh
 | 
			
		||||
 | 
			
		||||
.nfs00*
 | 
			
		||||
*.swo
 | 
			
		||||
*/*.swo
 | 
			
		||||
 
 | 
			
		||||
@@ -5,9 +5,9 @@
 | 
			
		||||
# required to install hpbandster ##################################
 | 
			
		||||
# pip install hpbandster         ##################################
 | 
			
		||||
###################################################################
 | 
			
		||||
# python exps/algos-v2/bohb.py --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
 | 
			
		||||
# OMP_NUM_THREADS=4 python exps/algos-v2/bohb.py --search_space tss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1
 | 
			
		||||
###################################################################
 | 
			
		||||
import os, sys, time, random, argparse
 | 
			
		||||
import os, sys, time, random, argparse, collections
 | 
			
		||||
from copy import deepcopy
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
import torch
 | 
			
		||||
@@ -17,7 +17,7 @@ from config_utils import load_config
 | 
			
		||||
from datasets     import get_datasets, SearchDataset
 | 
			
		||||
from procedures   import prepare_seed, prepare_logger
 | 
			
		||||
from log_utils    import AverageMeter, time_string, convert_secs2time
 | 
			
		||||
from nas_201_api  import NASBench201API as API
 | 
			
		||||
from nas_201_api  import NASBench201API, NASBench301API
 | 
			
		||||
from models       import CellStructure, get_search_spaces
 | 
			
		||||
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
 | 
			
		||||
import ConfigSpace
 | 
			
		||||
@@ -63,52 +63,21 @@ def config2topology_func(max_nodes=4):
 | 
			
		||||
 | 
			
		||||
class MyWorker(Worker):
 | 
			
		||||
 | 
			
		||||
  def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
 | 
			
		||||
  def __init__(self, *args, convert_func=None, dataset=None, api=None, **kwargs):
 | 
			
		||||
    super().__init__(*args, **kwargs)
 | 
			
		||||
    self.convert_func   = convert_func
 | 
			
		||||
    self._dataname      = dataname
 | 
			
		||||
    self._nas_bench     = nas_bench
 | 
			
		||||
    self.time_budget    = time_budget
 | 
			
		||||
    self.seen_archs     = []
 | 
			
		||||
    self.sim_cost_time  = 0
 | 
			
		||||
    self.real_cost_time = 0
 | 
			
		||||
    self.is_end         = False
 | 
			
		||||
 | 
			
		||||
  def get_the_best(self):
 | 
			
		||||
    assert len(self.seen_archs) > 0
 | 
			
		||||
    best_index, best_acc = -1, None
 | 
			
		||||
    for arch_index in self.seen_archs:
 | 
			
		||||
      info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
 | 
			
		||||
      vacc = info['valid-accuracy']
 | 
			
		||||
      if best_acc is None or best_acc < vacc:
 | 
			
		||||
        best_acc = vacc
 | 
			
		||||
        best_index = arch_index
 | 
			
		||||
    assert best_index != -1
 | 
			
		||||
    return best_index
 | 
			
		||||
    self._dataset       = dataset
 | 
			
		||||
    self._api           = api
 | 
			
		||||
    self.total_times    = []
 | 
			
		||||
    self.trajectory     = []
 | 
			
		||||
 | 
			
		||||
  def compute(self, config, budget, **kwargs):
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    structure  = self.convert_func( config )
 | 
			
		||||
    arch_index = self._nas_bench.query_index_by_arch( structure )
 | 
			
		||||
    info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
 | 
			
		||||
    cur_time   = info['train-all-time'] + info['valid-per-time']
 | 
			
		||||
    cur_vacc   = info['valid-accuracy']
 | 
			
		||||
    self.real_cost_time += (time.time() - start_time)
 | 
			
		||||
    if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
 | 
			
		||||
      self.sim_cost_time += cur_time
 | 
			
		||||
      self.seen_archs.append( arch_index )
 | 
			
		||||
      return ({'loss': 100 - float(cur_vacc),
 | 
			
		||||
               'info': {'seen-arch'     : len(self.seen_archs),
 | 
			
		||||
                        'sim-test-time' : self.sim_cost_time,
 | 
			
		||||
                        'current-arch'  : arch_index}
 | 
			
		||||
            })
 | 
			
		||||
    else:
 | 
			
		||||
      self.is_end = True
 | 
			
		||||
      return ({'loss': 100,
 | 
			
		||||
               'info': {'seen-arch'     : len(self.seen_archs),
 | 
			
		||||
                        'sim-test-time' : self.sim_cost_time,
 | 
			
		||||
                        'current-arch'  : None}
 | 
			
		||||
            })
 | 
			
		||||
    arch  = self.convert_func( config )
 | 
			
		||||
    accuracy, latency, time_cost, total_time = self._api.simulate_train_eval(arch, self._dataset, iepoch=int(budget)-1, hp='12')
 | 
			
		||||
    self.trajectory.append((accuracy, arch))
 | 
			
		||||
    self.total_times.append(total_time)
 | 
			
		||||
    return ({'loss': 100 - accuracy,
 | 
			
		||||
             'info': self._api.query_index_by_arch(arch)})
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(xargs, api):
 | 
			
		||||
@@ -117,12 +86,13 @@ def main(xargs, api):
 | 
			
		||||
  logger = prepare_logger(args)
 | 
			
		||||
 | 
			
		||||
  logger.log('{:} use api : {:}'.format(time_string(), api))
 | 
			
		||||
  api.reset_time()
 | 
			
		||||
  search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
 | 
			
		||||
  if xargs.search_space == 'tss':
 | 
			
		||||
  	cs = get_topology_config_space(xargs.max_nodes, search_space)
 | 
			
		||||
  	config2structure = config2topology_func(xargs.max_nodes)
 | 
			
		||||
  	cs = get_topology_config_space(search_space)
 | 
			
		||||
  	config2structure = config2topology_func()
 | 
			
		||||
  else:
 | 
			
		||||
  	cs = get_size_config_space(xargs.max_nodes, search_space)
 | 
			
		||||
    cs = get_size_config_space(search_space)
 | 
			
		||||
    import pdb; pdb.set_trace()
 | 
			
		||||
  
 | 
			
		||||
  hb_run_id = '0'
 | 
			
		||||
@@ -133,14 +103,13 @@ def main(xargs, api):
 | 
			
		||||
 | 
			
		||||
  workers = []
 | 
			
		||||
  for i in range(num_workers):
 | 
			
		||||
    w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
 | 
			
		||||
    w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataset=xargs.dataset, api=api, run_id=hb_run_id, id=i)
 | 
			
		||||
    w.run(background=True)
 | 
			
		||||
    workers.append(w)
 | 
			
		||||
 | 
			
		||||
  start_time = time.time()
 | 
			
		||||
  bohb = BOHB(configspace=cs,
 | 
			
		||||
            run_id=hb_run_id,
 | 
			
		||||
            eta=3, min_budget=12, max_budget=200,
 | 
			
		||||
  bohb = BOHB(configspace=cs, run_id=hb_run_id,
 | 
			
		||||
      eta=3, min_budget=1, max_budget=12,
 | 
			
		||||
      nameserver=ns_host,
 | 
			
		||||
      nameserver_port=ns_port,
 | 
			
		||||
      num_samples=xargs.num_samples,
 | 
			
		||||
@@ -152,22 +121,23 @@ def main(xargs, api):
 | 
			
		||||
  bohb.shutdown(shutdown_workers=True)
 | 
			
		||||
  NS.shutdown()
 | 
			
		||||
 | 
			
		||||
  real_cost_time = time.time() - start_time
 | 
			
		||||
  # print('There are {:} runs.'.format(len(results.get_all_runs())))
 | 
			
		||||
  # workers[0].total_times
 | 
			
		||||
  # workers[0].trajectory
 | 
			
		||||
  current_best_index = []
 | 
			
		||||
  for idx in range(len(workers[0].trajectory)):
 | 
			
		||||
    trajectory = workers[0].trajectory[:idx+1]
 | 
			
		||||
    arch = max(trajectory, key=lambda x: x[0])[1]
 | 
			
		||||
    current_best_index.append(api.query_index_by_arch(arch))
 | 
			
		||||
  
 | 
			
		||||
  id2config = results.get_id2config_mapping()
 | 
			
		||||
  incumbent = results.get_incumbent_id()
 | 
			
		||||
  logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
 | 
			
		||||
  best_arch = config2structure( id2config[incumbent]['config'] )
 | 
			
		||||
 | 
			
		||||
  info = nas_bench.query_by_arch(best_arch, '200')
 | 
			
		||||
  if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
 | 
			
		||||
  else           : logger.log('{:}'.format(info))
 | 
			
		||||
  best_arch = max(workers[0].trajectory, key=lambda x: x[0])[1]
 | 
			
		||||
  logger.log('Best found configuration: {:} within {:.3f} s'.format(best_arch, workers[0].total_times[-1]))
 | 
			
		||||
  info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
 | 
			
		||||
  logger.log('{:}'.format(info))
 | 
			
		||||
  logger.log('-'*100)
 | 
			
		||||
 | 
			
		||||
  logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
 | 
			
		||||
  logger.close()
 | 
			
		||||
  return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
 | 
			
		||||
 | 
			
		||||
  return logger.log_dir, current_best_index, workers[0].total_times
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
@@ -185,8 +155,8 @@ if __name__ == '__main__':
 | 
			
		||||
  parser.add_argument('--bandwidth_factor', default=3,   type=int, nargs='?', help='factor multiplied to the bandwidth')
 | 
			
		||||
  parser.add_argument('--n_iters',          default=300, type=int, nargs='?', help='number of iterations for optimization method')
 | 
			
		||||
  # log
 | 
			
		||||
  parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.')
 | 
			
		||||
  parser.add_argument('--rand_seed',          type=int,   help='manual seed')
 | 
			
		||||
  parser.add_argument('--save_dir',           type=str,  default='./output/search', help='Folder to save checkpoints and log.')
 | 
			
		||||
  parser.add_argument('--rand_seed',          type=int,  default=-1, help='manual seed')
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
  
 | 
			
		||||
  if args.search_space == 'tss':
 | 
			
		||||
 
 | 
			
		||||
@@ -43,7 +43,7 @@ def main(xargs, api):
 | 
			
		||||
  current_best_index = []
 | 
			
		||||
  while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget:
 | 
			
		||||
    arch = random_arch()
 | 
			
		||||
    accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
 | 
			
		||||
    accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
 | 
			
		||||
    total_time_cost.append(total_cost)
 | 
			
		||||
    history.append(arch)
 | 
			
		||||
    if best_arch is None or best_acc < accuracy:
 | 
			
		||||
 
 | 
			
		||||
@@ -160,7 +160,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
 | 
			
		||||
  while len(population) < population_size:
 | 
			
		||||
    model = Model()
 | 
			
		||||
    model.arch = random_arch()
 | 
			
		||||
    model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
 | 
			
		||||
    model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12')
 | 
			
		||||
    # Append the info
 | 
			
		||||
    population.append(model)
 | 
			
		||||
    history.append((model.accuracy, model.arch))
 | 
			
		||||
@@ -184,7 +184,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
 | 
			
		||||
    # Create the child model and store it.
 | 
			
		||||
    child = Model()
 | 
			
		||||
    child.arch = mutate_arch(parent.arch)
 | 
			
		||||
    child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, '12')
 | 
			
		||||
    child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, hp='12')
 | 
			
		||||
    # Append the info
 | 
			
		||||
    population.append(child)
 | 
			
		||||
    history.append((child.accuracy, child.arch))
 | 
			
		||||
 
 | 
			
		||||
@@ -150,7 +150,7 @@ def main(xargs, api):
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    log_prob, action = select_action( policy )
 | 
			
		||||
    arch   = policy.generate_arch( action )
 | 
			
		||||
    reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
 | 
			
		||||
    reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
 | 
			
		||||
    trace.append((reward, arch))
 | 
			
		||||
    total_costs.append(current_total_cost)
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,18 +1,19 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
# bash ./exps/algos-v2/run-all.sh
 | 
			
		||||
set -e
 | 
			
		||||
echo script name: $0
 | 
			
		||||
echo $# arguments
 | 
			
		||||
 | 
			
		||||
datasets="cifar10 cifar100 ImageNet16-120"
 | 
			
		||||
search_spaces="tss sss"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
for dataset in ${datasets}
 | 
			
		||||
do
 | 
			
		||||
  for search_space in ${search_spaces}
 | 
			
		||||
  do
 | 
			
		||||
    # python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
 | 
			
		||||
    python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
 | 
			
		||||
    python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
 | 
			
		||||
    # python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
 | 
			
		||||
    python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
 | 
			
		||||
    python exps/algos-v2/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
 | 
			
		||||
  done
 | 
			
		||||
done
 | 
			
		||||
 
 | 
			
		||||
@@ -5,7 +5,7 @@
 | 
			
		||||
###############################################################
 | 
			
		||||
# Usage: python exps/experimental/vis-bench-algos.py          #
 | 
			
		||||
###############################################################
 | 
			
		||||
import os, sys, time, torch, argparse
 | 
			
		||||
import os, gc, sys, time, torch, argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
from typing import List, Text, Dict, Any
 | 
			
		||||
from shutil import copyfile
 | 
			
		||||
@@ -31,6 +31,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
 | 
			
		||||
  alg2name['REA'] = 'R-EA-SS3'
 | 
			
		||||
  alg2name['REINFORCE'] = 'REINFORCE-0.001'
 | 
			
		||||
  alg2name['RANDOM'] = 'RANDOM'
 | 
			
		||||
  alg2name['BOHB'] = 'BOHB'
 | 
			
		||||
  for alg, name in alg2name.items():
 | 
			
		||||
    alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
 | 
			
		||||
    assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg])
 | 
			
		||||
@@ -58,14 +59,27 @@ def query_performance(api, data, dataset, ticket):
 | 
			
		||||
    results.append(interplate)
 | 
			
		||||
  return sum(results) / len(results)
 | 
			
		||||
 | 
			
		||||
y_min_s = {('cifar10', 'tss'): 90,
 | 
			
		||||
           ('cifar10', 'sss'): 92,
 | 
			
		||||
           ('cifar100', 'tss'): 65,
 | 
			
		||||
           ('cifar100', 'sss'): 65,
 | 
			
		||||
           ('ImageNet16-120', 'tss'): 36,
 | 
			
		||||
           ('ImageNet16-120', 'sss'): 40}
 | 
			
		||||
 | 
			
		||||
y_max_s = {('cifar10', 'tss'): 94.5,
 | 
			
		||||
           ('cifar10', 'sss'): 93.3,
 | 
			
		||||
           ('cifar100', 'tss'): 72,
 | 
			
		||||
           ('cifar100', 'sss'): 70,
 | 
			
		||||
           ('ImageNet16-120', 'tss'): 44,
 | 
			
		||||
           ('ImageNet16-120', 'sss'): 46}
 | 
			
		||||
 | 
			
		||||
def visualize_curve(api, vis_save_dir, search_space, max_time):
 | 
			
		||||
  vis_save_dir = vis_save_dir.resolve()
 | 
			
		||||
  vis_save_dir.mkdir(parents=True, exist_ok=True)
 | 
			
		||||
 | 
			
		||||
  dpi, width, height = 250, 5100, 1500
 | 
			
		||||
  dpi, width, height = 250, 5200, 1400
 | 
			
		||||
  figsize = width / float(dpi), height / float(dpi)
 | 
			
		||||
  LabelSize, LegendFontsize = 14, 14
 | 
			
		||||
  LabelSize, LegendFontsize = 16, 16
 | 
			
		||||
 | 
			
		||||
  def sub_plot_fn(ax, dataset):
 | 
			
		||||
    alg2data = fetch_data(search_space=search_space, dataset=dataset)
 | 
			
		||||
@@ -73,6 +87,8 @@ def visualize_curve(api, vis_save_dir, search_space, max_time):
 | 
			
		||||
    total_tickets = 150
 | 
			
		||||
    time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)]
 | 
			
		||||
    colors = ['b', 'g', 'c', 'm', 'y']
 | 
			
		||||
    ax.set_xlim(0, 200)
 | 
			
		||||
    ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
 | 
			
		||||
    for idx, (alg, data) in enumerate(alg2data.items()):
 | 
			
		||||
      print('plot alg : {:}'.format(alg))
 | 
			
		||||
      accuracies = []
 | 
			
		||||
@@ -107,5 +123,7 @@ if __name__ == '__main__':
 | 
			
		||||
 | 
			
		||||
  api201 = NASBench201API(verbose=False)
 | 
			
		||||
  visualize_curve(api201, save_dir, 'tss', args.max_time)
 | 
			
		||||
  del api201
 | 
			
		||||
  gc.collect()
 | 
			
		||||
  api301 = NASBench301API(verbose=False)
 | 
			
		||||
  visualize_curve(api301, save_dir, 'sss', args.max_time)
 | 
			
		||||
 
 | 
			
		||||
@@ -68,14 +68,14 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
 | 
			
		||||
  def reset_time(self):
 | 
			
		||||
    self._used_time = 0
 | 
			
		||||
 | 
			
		||||
  def simulate_train_eval(self, arch, dataset, hp='12', account_time=True):
 | 
			
		||||
  def simulate_train_eval(self, arch, dataset, iepoch=None, hp='12', account_time=True):
 | 
			
		||||
    index = self.query_index_by_arch(arch)
 | 
			
		||||
    all_names = ('cifar10', 'cifar100', 'ImageNet16-120')
 | 
			
		||||
    assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names)
 | 
			
		||||
    if dataset == 'cifar10':
 | 
			
		||||
      info = self.get_more_info(index, 'cifar10-valid', iepoch=None, hp=hp, is_random=True)
 | 
			
		||||
      info = self.get_more_info(index, 'cifar10-valid', iepoch=iepoch, hp=hp, is_random=True)
 | 
			
		||||
    else:
 | 
			
		||||
      info = self.get_more_info(index, dataset, iepoch=None, hp=hp, is_random=True)
 | 
			
		||||
      info = self.get_more_info(index, dataset, iepoch=iepoch, hp=hp, is_random=True)
 | 
			
		||||
    valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
 | 
			
		||||
    latency = self.get_latency(index, dataset)
 | 
			
		||||
    if account_time:
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user