Update REA, REINFORCE, RANDOM, and BOHB
This commit is contained in:
parent
168b08d9e6
commit
2c861f33c4
2
.gitignore
vendored
2
.gitignore
vendored
@ -123,3 +123,5 @@ scripts-search/l2s-algos
|
||||
TEMP-L.sh
|
||||
|
||||
.nfs00*
|
||||
*.swo
|
||||
*/*.swo
|
||||
|
@ -5,9 +5,9 @@
|
||||
# required to install hpbandster ##################################
|
||||
# pip install hpbandster ##################################
|
||||
###################################################################
|
||||
# python exps/algos-v2/bohb.py --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
|
||||
# OMP_NUM_THREADS=4 python exps/algos-v2/bohb.py --search_space tss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1
|
||||
###################################################################
|
||||
import os, sys, time, random, argparse
|
||||
import os, sys, time, random, argparse, collections
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import torch
|
||||
@ -17,7 +17,7 @@ from config_utils import load_config
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from nas_201_api import NASBench201API as API
|
||||
from nas_201_api import NASBench201API, NASBench301API
|
||||
from models import CellStructure, get_search_spaces
|
||||
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
||||
import ConfigSpace
|
||||
@ -63,52 +63,21 @@ def config2topology_func(max_nodes=4):
|
||||
|
||||
class MyWorker(Worker):
|
||||
|
||||
def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
|
||||
def __init__(self, *args, convert_func=None, dataset=None, api=None, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.convert_func = convert_func
|
||||
self._dataname = dataname
|
||||
self._nas_bench = nas_bench
|
||||
self.time_budget = time_budget
|
||||
self.seen_archs = []
|
||||
self.sim_cost_time = 0
|
||||
self.real_cost_time = 0
|
||||
self.is_end = False
|
||||
|
||||
def get_the_best(self):
|
||||
assert len(self.seen_archs) > 0
|
||||
best_index, best_acc = -1, None
|
||||
for arch_index in self.seen_archs:
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
||||
vacc = info['valid-accuracy']
|
||||
if best_acc is None or best_acc < vacc:
|
||||
best_acc = vacc
|
||||
best_index = arch_index
|
||||
assert best_index != -1
|
||||
return best_index
|
||||
self._dataset = dataset
|
||||
self._api = api
|
||||
self.total_times = []
|
||||
self.trajectory = []
|
||||
|
||||
def compute(self, config, budget, **kwargs):
|
||||
start_time = time.time()
|
||||
structure = self.convert_func( config )
|
||||
arch_index = self._nas_bench.query_index_by_arch( structure )
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
||||
cur_time = info['train-all-time'] + info['valid-per-time']
|
||||
cur_vacc = info['valid-accuracy']
|
||||
self.real_cost_time += (time.time() - start_time)
|
||||
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
|
||||
self.sim_cost_time += cur_time
|
||||
self.seen_archs.append( arch_index )
|
||||
return ({'loss': 100 - float(cur_vacc),
|
||||
'info': {'seen-arch' : len(self.seen_archs),
|
||||
'sim-test-time' : self.sim_cost_time,
|
||||
'current-arch' : arch_index}
|
||||
})
|
||||
else:
|
||||
self.is_end = True
|
||||
return ({'loss': 100,
|
||||
'info': {'seen-arch' : len(self.seen_archs),
|
||||
'sim-test-time' : self.sim_cost_time,
|
||||
'current-arch' : None}
|
||||
})
|
||||
arch = self.convert_func( config )
|
||||
accuracy, latency, time_cost, total_time = self._api.simulate_train_eval(arch, self._dataset, iepoch=int(budget)-1, hp='12')
|
||||
self.trajectory.append((accuracy, arch))
|
||||
self.total_times.append(total_time)
|
||||
return ({'loss': 100 - accuracy,
|
||||
'info': self._api.query_index_by_arch(arch)})
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
@ -117,12 +86,13 @@ def main(xargs, api):
|
||||
logger = prepare_logger(args)
|
||||
|
||||
logger.log('{:} use api : {:}'.format(time_string(), api))
|
||||
api.reset_time()
|
||||
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||
if xargs.search_space == 'tss':
|
||||
cs = get_topology_config_space(xargs.max_nodes, search_space)
|
||||
config2structure = config2topology_func(xargs.max_nodes)
|
||||
cs = get_topology_config_space(search_space)
|
||||
config2structure = config2topology_func()
|
||||
else:
|
||||
cs = get_size_config_space(xargs.max_nodes, search_space)
|
||||
cs = get_size_config_space(search_space)
|
||||
import pdb; pdb.set_trace()
|
||||
|
||||
hb_run_id = '0'
|
||||
@ -133,14 +103,13 @@ def main(xargs, api):
|
||||
|
||||
workers = []
|
||||
for i in range(num_workers):
|
||||
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
|
||||
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataset=xargs.dataset, api=api, run_id=hb_run_id, id=i)
|
||||
w.run(background=True)
|
||||
workers.append(w)
|
||||
|
||||
start_time = time.time()
|
||||
bohb = BOHB(configspace=cs,
|
||||
run_id=hb_run_id,
|
||||
eta=3, min_budget=12, max_budget=200,
|
||||
bohb = BOHB(configspace=cs, run_id=hb_run_id,
|
||||
eta=3, min_budget=1, max_budget=12,
|
||||
nameserver=ns_host,
|
||||
nameserver_port=ns_port,
|
||||
num_samples=xargs.num_samples,
|
||||
@ -152,22 +121,23 @@ def main(xargs, api):
|
||||
bohb.shutdown(shutdown_workers=True)
|
||||
NS.shutdown()
|
||||
|
||||
real_cost_time = time.time() - start_time
|
||||
# print('There are {:} runs.'.format(len(results.get_all_runs())))
|
||||
# workers[0].total_times
|
||||
# workers[0].trajectory
|
||||
current_best_index = []
|
||||
for idx in range(len(workers[0].trajectory)):
|
||||
trajectory = workers[0].trajectory[:idx+1]
|
||||
arch = max(trajectory, key=lambda x: x[0])[1]
|
||||
current_best_index.append(api.query_index_by_arch(arch))
|
||||
|
||||
id2config = results.get_id2config_mapping()
|
||||
incumbent = results.get_incumbent_id()
|
||||
logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
|
||||
best_arch = config2structure( id2config[incumbent]['config'] )
|
||||
|
||||
info = nas_bench.query_by_arch(best_arch, '200')
|
||||
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||
else : logger.log('{:}'.format(info))
|
||||
best_arch = max(workers[0].trajectory, key=lambda x: x[0])[1]
|
||||
logger.log('Best found configuration: {:} within {:.3f} s'.format(best_arch, workers[0].total_times[-1]))
|
||||
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
||||
logger.log('{:}'.format(info))
|
||||
logger.log('-'*100)
|
||||
|
||||
logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
|
||||
logger.close()
|
||||
return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
|
||||
|
||||
return logger.log_dir, current_best_index, workers[0].total_times
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -185,8 +155,8 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
|
||||
parser.add_argument('--n_iters', default=300, type=int, nargs='?', help='number of iterations for optimization method')
|
||||
# log
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
||||
|
@ -43,7 +43,7 @@ def main(xargs, api):
|
||||
current_best_index = []
|
||||
while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget:
|
||||
arch = random_arch()
|
||||
accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
|
||||
total_time_cost.append(total_cost)
|
||||
history.append(arch)
|
||||
if best_arch is None or best_acc < accuracy:
|
||||
|
@ -160,7 +160,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
while len(population) < population_size:
|
||||
model = Model()
|
||||
model.arch = random_arch()
|
||||
model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12')
|
||||
# Append the info
|
||||
population.append(model)
|
||||
history.append((model.accuracy, model.arch))
|
||||
@ -184,7 +184,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
# Create the child model and store it.
|
||||
child = Model()
|
||||
child.arch = mutate_arch(parent.arch)
|
||||
child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, '12')
|
||||
child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, hp='12')
|
||||
# Append the info
|
||||
population.append(child)
|
||||
history.append((child.accuracy, child.arch))
|
||||
|
@ -150,7 +150,7 @@ def main(xargs, api):
|
||||
start_time = time.time()
|
||||
log_prob, action = select_action( policy )
|
||||
arch = policy.generate_arch( action )
|
||||
reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
|
||||
trace.append((reward, arch))
|
||||
total_costs.append(current_total_cost)
|
||||
|
||||
|
@ -1,18 +1,19 @@
|
||||
#!/bin/bash
|
||||
# bash ./exps/algos-v2/run-all.sh
|
||||
set -e
|
||||
echo script name: $0
|
||||
echo $# arguments
|
||||
|
||||
datasets="cifar10 cifar100 ImageNet16-120"
|
||||
search_spaces="tss sss"
|
||||
|
||||
|
||||
for dataset in ${datasets}
|
||||
do
|
||||
for search_space in ${search_spaces}
|
||||
do
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
|
||||
python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
|
||||
python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
|
||||
# python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
|
||||
python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
|
||||
python exps/algos-v2/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
|
||||
done
|
||||
done
|
||||
|
@ -5,7 +5,7 @@
|
||||
###############################################################
|
||||
# Usage: python exps/experimental/vis-bench-algos.py #
|
||||
###############################################################
|
||||
import os, sys, time, torch, argparse
|
||||
import os, gc, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
@ -31,6 +31,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
alg2name['REA'] = 'R-EA-SS3'
|
||||
alg2name['REINFORCE'] = 'REINFORCE-0.001'
|
||||
alg2name['RANDOM'] = 'RANDOM'
|
||||
alg2name['BOHB'] = 'BOHB'
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
|
||||
assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg])
|
||||
@ -58,14 +59,27 @@ def query_performance(api, data, dataset, ticket):
|
||||
results.append(interplate)
|
||||
return sum(results) / len(results)
|
||||
|
||||
y_min_s = {('cifar10', 'tss'): 90,
|
||||
('cifar10', 'sss'): 92,
|
||||
('cifar100', 'tss'): 65,
|
||||
('cifar100', 'sss'): 65,
|
||||
('ImageNet16-120', 'tss'): 36,
|
||||
('ImageNet16-120', 'sss'): 40}
|
||||
|
||||
y_max_s = {('cifar10', 'tss'): 94.5,
|
||||
('cifar10', 'sss'): 93.3,
|
||||
('cifar100', 'tss'): 72,
|
||||
('cifar100', 'sss'): 70,
|
||||
('ImageNet16-120', 'tss'): 44,
|
||||
('ImageNet16-120', 'sss'): 46}
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space, max_time):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5100, 1500
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 14, 14
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
@ -73,6 +87,8 @@ def visualize_curve(api, vis_save_dir, search_space, max_time):
|
||||
total_tickets = 150
|
||||
time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)]
|
||||
colors = ['b', 'g', 'c', 'm', 'y']
|
||||
ax.set_xlim(0, 200)
|
||||
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
print('plot alg : {:}'.format(alg))
|
||||
accuracies = []
|
||||
@ -107,5 +123,7 @@ if __name__ == '__main__':
|
||||
|
||||
api201 = NASBench201API(verbose=False)
|
||||
visualize_curve(api201, save_dir, 'tss', args.max_time)
|
||||
del api201
|
||||
gc.collect()
|
||||
api301 = NASBench301API(verbose=False)
|
||||
visualize_curve(api301, save_dir, 'sss', args.max_time)
|
||||
|
@ -68,14 +68,14 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def reset_time(self):
|
||||
self._used_time = 0
|
||||
|
||||
def simulate_train_eval(self, arch, dataset, hp='12', account_time=True):
|
||||
def simulate_train_eval(self, arch, dataset, iepoch=None, hp='12', account_time=True):
|
||||
index = self.query_index_by_arch(arch)
|
||||
all_names = ('cifar10', 'cifar100', 'ImageNet16-120')
|
||||
assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names)
|
||||
if dataset == 'cifar10':
|
||||
info = self.get_more_info(index, 'cifar10-valid', iepoch=None, hp=hp, is_random=True)
|
||||
info = self.get_more_info(index, 'cifar10-valid', iepoch=iepoch, hp=hp, is_random=True)
|
||||
else:
|
||||
info = self.get_more_info(index, dataset, iepoch=None, hp=hp, is_random=True)
|
||||
info = self.get_more_info(index, dataset, iepoch=iepoch, hp=hp, is_random=True)
|
||||
valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
|
||||
latency = self.get_latency(index, dataset)
|
||||
if account_time:
|
||||
|
Loading…
Reference in New Issue
Block a user