update NAS-Bench-102 baselines / support track_running_stats
This commit is contained in:
		| @@ -158,6 +158,8 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_ | ||||
| We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102. | ||||
| If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly. | ||||
|  | ||||
| Note that you need to prepare the training and test data as described in [Preparation and Download](#preparation-and-download) | ||||
|  | ||||
| - [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1` | ||||
| - [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1` | ||||
| - [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 -1` | ||||
|   | ||||
| @@ -135,6 +135,7 @@ def main(xargs): | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   logger.log('search-model :\n{:}'.format(search_model)) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
| @@ -211,10 +212,9 @@ def main(xargs): | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     if api is not None: | ||||
|       logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|   | ||||
| @@ -17,6 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
|  | ||||
|  | ||||
| def _concat(xs): | ||||
| @@ -198,6 +199,7 @@ def main(xargs): | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   logger.log('search-model :\n{:}'.format(search_model)) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
| @@ -208,6 +210,11 @@ def main(xargs): | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|   if xargs.arch_nas_dataset is None: | ||||
|     api = None | ||||
|   else: | ||||
|     api = API(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} create API = {:} done'.format(time_string(), api)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
| @@ -229,7 +236,7 @@ def main(xargs): | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
| @@ -238,7 +245,8 @@ def main(xargs): | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min_LR)) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     search_time.update(time.time() - start_time) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
| @@ -271,29 +279,15 @@ def main(xargs): | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno = genotypes[total_epoch-1] | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|     geno = genotypes['best'] | ||||
|     logger.log('The best model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   """ | ||||
|   logger.log('DARTS-V2 : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotypes[total_epoch-1])) | ||||
|   if api is not None: logger.log('{:}'.format( api.query_by_arch(genotypes[total_epoch-1]) )) | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| @@ -15,6 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
| @@ -103,6 +106,7 @@ def main(xargs): | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   logger.log('search-model :\n{:}'.format(search_model)) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
| @@ -113,7 +117,12 @@ def main(xargs): | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|   logger.log('search_space : {:}'.format(search_space)) | ||||
|   logger.log('search-space : {:}'.format(search_space)) | ||||
|   if xargs.arch_nas_dataset is None: | ||||
|     api = None | ||||
|   else: | ||||
|     api = API(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} create API = {:} done'.format(time_string(), api)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
| @@ -135,7 +144,7 @@ def main(xargs): | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
| @@ -145,6 +154,7 @@ def main(xargs): | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \ | ||||
|               = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     search_time.update(time.time() - start_time) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss , valid_a_top1 , valid_a_top5 )) | ||||
|     # check the best accuracy | ||||
| @@ -177,24 +187,15 @@ def main(xargs): | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno = genotypes[total_epoch-1] | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|   """ | ||||
|   logger.log('DARTS-V1 : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotypes[total_epoch-1])) | ||||
|   if api is not None: logger.log('{:}'.format( api.query_by_arch(genotypes[total_epoch-1]) )) | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|   | ||||
| @@ -19,9 +19,9 @@ class InferCell(nn.Module): | ||||
|       cur_innod = [] | ||||
|       for (op_name, op_in) in node_info: | ||||
|         if op_in == 0: | ||||
|           layer = OPS[op_name](C_in , C_out, stride, True) | ||||
|           layer = OPS[op_name](C_in , C_out, stride, True, True) | ||||
|         else: | ||||
|           layer = OPS[op_name](C_out, C_out,      1, True) | ||||
|           layer = OPS[op_name](C_out, C_out,      1, True, True) | ||||
|         cur_index.append( len(self.layers) ) | ||||
|         cur_innod.append( op_in ) | ||||
|         self.layers.append( layer ) | ||||
|   | ||||
| @@ -7,13 +7,13 @@ import torch.nn as nn | ||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
|  | ||||
| OPS = { | ||||
|   'none'         : lambda C_in, C_out, stride, affine: Zero(C_in, C_out, stride), | ||||
|   'avg_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg'), | ||||
|   'max_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'max'), | ||||
|   'nor_conv_7x7' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine), | ||||
|   'nor_conv_3x3' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine), | ||||
|   'nor_conv_1x1' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine), | ||||
|   'skip_connect' : lambda C_in, C_out, stride, affine: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine), | ||||
|   'none'         : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), | ||||
|   'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats), | ||||
|   'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats), | ||||
|   'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats), | ||||
|   'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), | ||||
|   'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats), | ||||
|   'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats), | ||||
| } | ||||
|  | ||||
| CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3'] | ||||
| @@ -27,12 +27,12 @@ SearchSpaceNames = {'connect-nas'  : CONNECT_NAS_BENCHMARK, | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine): | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): | ||||
|     super(ReLUConvBN, self).__init__() | ||||
|     self.op = nn.Sequential( | ||||
|       nn.ReLU(inplace=False), | ||||
|       nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), | ||||
|       nn.BatchNorm2d(C_out, affine=affine) | ||||
|       nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
|     ) | ||||
|  | ||||
|   def forward(self, x): | ||||
| @@ -77,12 +77,12 @@ class ResNetBasicblock(nn.Module): | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, mode, affine=True): | ||||
|   def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True): | ||||
|     super(POOLING, self).__init__() | ||||
|     if C_in == C_out: | ||||
|       self.preprocess = None | ||||
|     else: | ||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, affine) | ||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, affine, track_running_stats) | ||||
|     if mode == 'avg'  : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | ||||
|     elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) | ||||
|     else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) | ||||
| @@ -127,7 +127,7 @@ class Zero(nn.Module): | ||||
|  | ||||
| class FactorizedReduce(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, affine): | ||||
|   def __init__(self, C_in, C_out, stride, affine, track_running_stats): | ||||
|     super(FactorizedReduce, self).__init__() | ||||
|     self.stride = stride | ||||
|     self.C_in   = C_in   | ||||
| @@ -142,7 +142,7 @@ class FactorizedReduce(nn.Module): | ||||
|       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|     else: | ||||
|       raise ValueError('Invalid stride : {:}'.format(stride)) | ||||
|     self.bn = nn.BatchNorm2d(C_out, affine=affine) | ||||
|     self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.relu(x) | ||||
|   | ||||
| @@ -11,7 +11,7 @@ from ..cell_operations import OPS | ||||
|  | ||||
| class SearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names): | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True): | ||||
|     super(SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
| @@ -23,9 +23,9 @@ class SearchCell(nn.Module): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if j == 0: | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride, False) for op_name in op_names] | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names] | ||||
|         else: | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1, False) for op_name in op_names] | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1, affine, track_running_stats) for op_name in op_names] | ||||
|         self.edges[ node_str ] = nn.ModuleList( xlists ) | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|   | ||||
| @@ -28,7 +28,7 @@ else | ||||
|   mode=cover | ||||
| fi | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/AA-NAS-Bench-main.py \ | ||||
| OMP_NUM_THREADS=4 python ./exps/NAS-Bench-102/main.py \ | ||||
| 	--mode ${mode} --save_dir ${save_dir} --max_node 4 \ | ||||
| 	--use_less ${use_less} \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
|   | ||||
| @@ -19,6 +19,7 @@ seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -26,11 +27,12 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/DARTS-V2-${dataset} | ||||
| save_dir=./output/search-cell-${space}/DARTS-V2-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V2.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user