update configs
This commit is contained in:
parent
4bac459bf9
commit
322d5462a3
@ -5,6 +5,7 @@
|
||||
"momentum" : ["float", 0.9],
|
||||
"decay" : ["float", 0.0003],
|
||||
"LR" : ["float", 0.025],
|
||||
"LR_MIN" : ["float", 0.0001],
|
||||
"auxiliary" : ["bool", 1],
|
||||
"auxiliary_weight" : ["float", 0.4],
|
||||
"grad_clip" : ["float", 5],
|
||||
|
14
configs/nas-cifar-cos-cutB128.config
Normal file
14
configs/nas-cifar-cos-cutB128.config
Normal file
@ -0,0 +1,14 @@
|
||||
{
|
||||
"type" : ["str", "cosine"],
|
||||
"batch_size": ["int", 128],
|
||||
"epochs" : ["int", 600],
|
||||
"momentum" : ["float", 0.9],
|
||||
"decay" : ["float", 0.0003],
|
||||
"LR" : ["float", 0.025],
|
||||
"LR_MIN" : ["float", 0.0001],
|
||||
"auxiliary" : ["bool", 1],
|
||||
"auxiliary_weight" : ["float", 0.4],
|
||||
"grad_clip" : ["float", 5],
|
||||
"cutout" : ["int", 16],
|
||||
"drop_path_prob" : ["float", 0.2]
|
||||
}
|
14
configs/nas-cifar-cos-cutB64.config
Normal file
14
configs/nas-cifar-cos-cutB64.config
Normal file
@ -0,0 +1,14 @@
|
||||
{
|
||||
"type" : ["str", "cosine"],
|
||||
"batch_size": ["int", 64],
|
||||
"epochs" : ["int", 600],
|
||||
"momentum" : ["float", 0.9],
|
||||
"decay" : ["float", 0.0003],
|
||||
"LR" : ["float", 0.025],
|
||||
"LR_MIN" : ["float", 0.0001],
|
||||
"auxiliary" : ["bool", 1],
|
||||
"auxiliary_weight" : ["float", 0.4],
|
||||
"grad_clip" : ["float", 5],
|
||||
"cutout" : ["int", 16],
|
||||
"drop_path_prob" : ["float", 0.2]
|
||||
}
|
@ -5,6 +5,7 @@
|
||||
"momentum" : ["float", 0.9],
|
||||
"decay" : ["float", 0.0003],
|
||||
"LR" : ["float", 0.025],
|
||||
"LR_MIN" : ["float", 0.0001],
|
||||
"auxiliary" : ["bool", 1],
|
||||
"auxiliary_weight" : ["float", 0.4],
|
||||
"grad_clip" : ["float", 5],
|
||||
|
@ -54,7 +54,7 @@ def main_procedure(config, dataset, data_path, args, genotype, init_channels, la
|
||||
optimizer = torch.optim.SGD(model.parameters(), config.LR, momentum=config.momentum, weight_decay=config.decay)
|
||||
#optimizer = torch.optim.SGD(model.parameters(), config.LR, momentum=config.momentum, weight_decay=config.decay, nestero=True)
|
||||
if config.type == 'cosine':
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.epochs))
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.epochs), eta_min=float(config.LR_MIN))
|
||||
else:
|
||||
raise ValueError('Can not find the schedular type : {:}'.format(config.type))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user