Add SuperTransformerEncoder
This commit is contained in:
		
							
								
								
									
										1
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -40,6 +40,7 @@ jobs: | |||||||
|       - name: Test Search Space |       - name: Test Search Space | ||||||
|         run: | |         run: | | ||||||
|           python -m pip install pytest numpy |           python -m pip install pytest numpy | ||||||
|  |           python -m pip install parameterized | ||||||
|           echo $PWD |           echo $PWD | ||||||
|           echo "Show what we have here:" |           echo "Show what we have here:" | ||||||
|           ls |           ls | ||||||
|   | |||||||
							
								
								
									
										1
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -27,6 +27,7 @@ jobs: | |||||||
|       - name: Test Super Model |       - name: Test Super Model | ||||||
|         run: | |         run: | | ||||||
|           python -m pip install pytest numpy |           python -m pip install pytest numpy | ||||||
|  |           python -m pip install parameterized | ||||||
|           python -m pip install torch torchvision torchaudio |           python -m pip install torch torchvision torchaudio | ||||||
|           python -m pytest ./tests/test_super_model.py -s |           python -m pytest ./tests/test_super_model.py -s | ||||||
|         shell: bash |         shell: bash | ||||||
|   | |||||||
| @@ -29,8 +29,8 @@ class SuperAttention(SuperModule): | |||||||
|         proj_dim: IntSpaceType, |         proj_dim: IntSpaceType, | ||||||
|         num_heads: IntSpaceType, |         num_heads: IntSpaceType, | ||||||
|         qkv_bias: BoolSpaceType = False, |         qkv_bias: BoolSpaceType = False, | ||||||
|         attn_drop: float = 0.0, |         attn_drop: Optional[float] = None, | ||||||
|         proj_drop: float = 0.0, |         proj_drop: Optional[float] = None, | ||||||
|     ): |     ): | ||||||
|         super(SuperAttention, self).__init__() |         super(SuperAttention, self).__init__() | ||||||
|         self._input_dim = input_dim |         self._input_dim = input_dim | ||||||
| @@ -45,9 +45,9 @@ class SuperAttention(SuperModule): | |||||||
|         self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) |         self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) | ||||||
|         self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) |         self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) | ||||||
|  |  | ||||||
|         self.attn_drop = nn.Dropout(attn_drop) |         self.attn_drop = nn.Dropout(attn_drop or 0.0) | ||||||
|         self.proj = SuperLinear(input_dim, proj_dim) |         self.proj = SuperLinear(input_dim, proj_dim) | ||||||
|         self.proj_drop = nn.Dropout(proj_drop) |         self.proj_drop = nn.Dropout(proj_drop or 0.0) | ||||||
|  |  | ||||||
|     @property |     @property | ||||||
|     def num_heads(self): |     def num_heads(self): | ||||||
|   | |||||||
| @@ -4,5 +4,7 @@ | |||||||
| from .super_module import SuperRunMode | from .super_module import SuperRunMode | ||||||
| from .super_module import SuperModule | from .super_module import SuperModule | ||||||
| from .super_linear import SuperLinear | from .super_linear import SuperLinear | ||||||
| from .super_linear import SuperMLP | from .super_linear import SuperMLPv1, SuperMLPv2 | ||||||
|  | from .super_norm import SuperLayerNorm1D | ||||||
| from .super_attention import SuperAttention | from .super_attention import SuperAttention | ||||||
|  | from .super_transformer import SuperTransformerEncoderLayer | ||||||
|   | |||||||
| @@ -113,7 +113,7 @@ class SuperLinear(SuperModule): | |||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperMLP(SuperModule): | class SuperMLPv1(SuperModule): | ||||||
|     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" |     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" | ||||||
|  |  | ||||||
|     def __init__( |     def __init__( | ||||||
| @@ -124,7 +124,7 @@ class SuperMLP(SuperModule): | |||||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, |         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||||
|         drop: Optional[float] = None, |         drop: Optional[float] = None, | ||||||
|     ): |     ): | ||||||
|         super(SuperMLP, self).__init__() |         super(SuperMLPv1, self).__init__() | ||||||
|         self._in_features = in_features |         self._in_features = in_features | ||||||
|         self._hidden_features = hidden_features |         self._hidden_features = hidden_features | ||||||
|         self._out_features = out_features |         self._out_features = out_features | ||||||
| @@ -146,20 +146,17 @@ class SuperMLP(SuperModule): | |||||||
|         return root_node |         return root_node | ||||||
|  |  | ||||||
|     def apply_candidate(self, abstract_child: spaces.VirtualNode): |     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||||
|         super(SuperMLP, self).apply_candidate(abstract_child) |         super(SuperMLPv1, self).apply_candidate(abstract_child) | ||||||
|         if "fc1" in abstract_child: |         if "fc1" in abstract_child: | ||||||
|             self.fc1.apply_candidate(abstract_child["fc1"]) |             self.fc1.apply_candidate(abstract_child["fc1"]) | ||||||
|         if "fc2" in abstract_child: |         if "fc2" in abstract_child: | ||||||
|             self.fc2.apply_candidate(abstract_child["fc2"]) |             self.fc2.apply_candidate(abstract_child["fc2"]) | ||||||
|  |  | ||||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|         return self._unified_forward(input) |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|         return self._unified_forward(input) |         x = self.fc1(input) | ||||||
|  |  | ||||||
|     def _unified_forward(self, x): |  | ||||||
|         x = self.fc1(x) |  | ||||||
|         x = self.act(x) |         x = self.act(x) | ||||||
|         x = self.drop(x) |         x = self.drop(x) | ||||||
|         x = self.fc2(x) |         x = self.fc2(x) | ||||||
| @@ -173,3 +170,137 @@ class SuperMLP(SuperModule): | |||||||
|             self._out_features, |             self._out_features, | ||||||
|             self._drop_rate, |             self._drop_rate, | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperMLPv2(SuperModule): | ||||||
|  |     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, | ||||||
|  |         in_features: IntSpaceType, | ||||||
|  |         hidden_multiplier: IntSpaceType, | ||||||
|  |         out_features: IntSpaceType, | ||||||
|  |         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||||
|  |         drop: Optional[float] = None, | ||||||
|  |     ): | ||||||
|  |         super(SuperMLPv2, self).__init__() | ||||||
|  |         self._in_features = in_features | ||||||
|  |         self._hidden_multiplier = hidden_multiplier | ||||||
|  |         self._out_features = out_features | ||||||
|  |         self._drop_rate = drop | ||||||
|  |         self._params = nn.ParameterDict({}) | ||||||
|  |  | ||||||
|  |         self._create_linear( | ||||||
|  |             "fc1", self.in_features, int(self.in_features * self.hidden_multiplier) | ||||||
|  |         ) | ||||||
|  |         self._create_linear( | ||||||
|  |             "fc2", int(self.in_features * self.hidden_multiplier), self.out_features | ||||||
|  |         ) | ||||||
|  |         self.act = act_layer() | ||||||
|  |         self.drop = nn.Dropout(drop or 0.0) | ||||||
|  |         self.reset_parameters() | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def in_features(self): | ||||||
|  |         return spaces.get_max(self._in_features) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def hidden_multiplier(self): | ||||||
|  |         return spaces.get_max(self._hidden_multiplier) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def out_features(self): | ||||||
|  |         return spaces.get_max(self._out_features) | ||||||
|  |  | ||||||
|  |     def _create_linear(self, name, inC, outC): | ||||||
|  |         self._params["{:}_super_weight".format(name)] = torch.nn.Parameter( | ||||||
|  |             torch.Tensor(outC, inC) | ||||||
|  |         ) | ||||||
|  |         self._params["{:}_super_bias".format(name)] = torch.nn.Parameter( | ||||||
|  |             torch.Tensor(outC) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |     def reset_parameters(self) -> None: | ||||||
|  |         nn.init.kaiming_uniform_(self._params["fc1_super_weight"], a=math.sqrt(5)) | ||||||
|  |         nn.init.kaiming_uniform_(self._params["fc2_super_weight"], a=math.sqrt(5)) | ||||||
|  |         fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | ||||||
|  |             self._params["fc1_super_weight"] | ||||||
|  |         ) | ||||||
|  |         bound = 1 / math.sqrt(fan_in) | ||||||
|  |         nn.init.uniform_(self._params["fc1_super_bias"], -bound, bound) | ||||||
|  |         fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | ||||||
|  |             self._params["fc2_super_weight"] | ||||||
|  |         ) | ||||||
|  |         bound = 1 / math.sqrt(fan_in) | ||||||
|  |         nn.init.uniform_(self._params["fc2_super_bias"], -bound, bound) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         root_node = spaces.VirtualNode(id(self)) | ||||||
|  |         if not spaces.is_determined(self._in_features): | ||||||
|  |             root_node.append( | ||||||
|  |                 "_in_features", self._in_features.abstract(reuse_last=True) | ||||||
|  |             ) | ||||||
|  |         if not spaces.is_determined(self._hidden_multiplier): | ||||||
|  |             root_node.append( | ||||||
|  |                 "_hidden_multiplier", self._hidden_multiplier.abstract(reuse_last=True) | ||||||
|  |             ) | ||||||
|  |         if not spaces.is_determined(self._out_features): | ||||||
|  |             root_node.append( | ||||||
|  |                 "_out_features", self._out_features.abstract(reuse_last=True) | ||||||
|  |             ) | ||||||
|  |         return root_node | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         # check inputs -> | ||||||
|  |         if not spaces.is_determined(self._in_features): | ||||||
|  |             expected_input_dim = self.abstract_child["_in_features"].value | ||||||
|  |         else: | ||||||
|  |             expected_input_dim = spaces.get_determined_value(self._in_features) | ||||||
|  |         if input.size(-1) != expected_input_dim: | ||||||
|  |             raise ValueError( | ||||||
|  |                 "Expect the input dim of {:} instead of {:}".format( | ||||||
|  |                     expected_input_dim, input.size(-1) | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |         # create the weight and bias matrix for fc1 | ||||||
|  |         if not spaces.is_determined(self._hidden_multiplier): | ||||||
|  |             hmul = self.abstract_child["_hidden_multiplier"].value * expected_input_dim | ||||||
|  |         else: | ||||||
|  |             hmul = spaces.get_determined_value(self._hidden_multiplier) | ||||||
|  |         hidden_dim = int(expected_input_dim * hmul) | ||||||
|  |         _fc1_weight = self._params["fc1_super_weight"][:hidden_dim, :expected_input_dim] | ||||||
|  |         _fc1_bias = self._params["fc1_super_bias"][:hidden_dim] | ||||||
|  |         x = F.linear(input, _fc1_weight, _fc1_bias) | ||||||
|  |         x = self.act(x) | ||||||
|  |         x = self.drop(x) | ||||||
|  |         # create the weight and bias matrix for fc2 | ||||||
|  |         if not spaces.is_determined(self._out_features): | ||||||
|  |             out_dim = self.abstract_child["_out_features"].value | ||||||
|  |         else: | ||||||
|  |             out_dim = spaces.get_determined_value(self._out_features) | ||||||
|  |         _fc2_weight = self._params["fc2_super_weight"][:out_dim, :hidden_dim] | ||||||
|  |         _fc2_bias = self._params["fc2_super_bias"][:out_dim] | ||||||
|  |         x = F.linear(x, _fc2_weight, _fc2_bias) | ||||||
|  |         x = self.drop(x) | ||||||
|  |         return x | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         x = F.linear( | ||||||
|  |             input, self._params["fc1_super_weight"], self._params["fc1_super_bias"] | ||||||
|  |         ) | ||||||
|  |         x = self.act(x) | ||||||
|  |         x = self.drop(x) | ||||||
|  |         x = F.linear( | ||||||
|  |             x, self._params["fc2_super_weight"], self._params["fc2_super_bias"] | ||||||
|  |         ) | ||||||
|  |         x = self.drop(x) | ||||||
|  |         return x | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "in_features={:}, hidden_multiplier={:}, out_features={:}, drop={:}, fc1 -> act -> drop -> fc2 -> drop,".format( | ||||||
|  |             self._in_features, | ||||||
|  |             self._hidden_multiplier, | ||||||
|  |             self._out_features, | ||||||
|  |             self._drop_rate, | ||||||
|  |         ) | ||||||
|   | |||||||
							
								
								
									
										82
									
								
								lib/xlayers/super_norm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										82
									
								
								lib/xlayers/super_norm.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,82 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
|  | ##################################################### | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | import torch.nn.functional as F | ||||||
|  |  | ||||||
|  | import math | ||||||
|  | from typing import Optional, Callable | ||||||
|  |  | ||||||
|  | import spaces | ||||||
|  | from .super_module import SuperModule | ||||||
|  | from .super_module import IntSpaceType | ||||||
|  | from .super_module import BoolSpaceType | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperLayerNorm1D(SuperModule): | ||||||
|  |     """Super Layer Norm.""" | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, dim: IntSpaceType, eps: float = 1e-5, elementwise_affine: bool = True | ||||||
|  |     ) -> None: | ||||||
|  |         super(SuperLayerNorm1D, self).__init__() | ||||||
|  |         self._in_dim = dim | ||||||
|  |         self._eps = eps | ||||||
|  |         self._elementwise_affine = elementwise_affine | ||||||
|  |         if self._elementwise_affine: | ||||||
|  |             self.weight = nn.Parameter(torch.Tensor(self.in_dim)) | ||||||
|  |             self.bias = nn.Parameter(torch.Tensor(self.in_dim)) | ||||||
|  |         else: | ||||||
|  |             self.register_parameter("weight", None) | ||||||
|  |             self.register_parameter("bias", None) | ||||||
|  |         self.reset_parameters() | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def in_dim(self): | ||||||
|  |         return spaces.get_max(self._in_dim) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def eps(self): | ||||||
|  |         return self._eps | ||||||
|  |  | ||||||
|  |     def reset_parameters(self) -> None: | ||||||
|  |         if self._elementwise_affine: | ||||||
|  |             nn.init.ones_(self.weight) | ||||||
|  |             nn.init.zeros_(self.bias) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         root_node = spaces.VirtualNode(id(self)) | ||||||
|  |         if not spaces.is_determined(self._in_dim): | ||||||
|  |             root_node.append("_in_dim", self._in_dim.abstract(reuse_last=True)) | ||||||
|  |         return root_node | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         # check inputs -> | ||||||
|  |         if not spaces.is_determined(self._in_dim): | ||||||
|  |             expected_input_dim = self.abstract_child["_in_dim"].value | ||||||
|  |         else: | ||||||
|  |             expected_input_dim = spaces.get_determined_value(self._in_dim) | ||||||
|  |         if input.size(-1) != expected_input_dim: | ||||||
|  |             raise ValueError( | ||||||
|  |                 "Expect the input dim of {:} instead of {:}".format( | ||||||
|  |                     expected_input_dim, input.size(-1) | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |         if self._elementwise_affine: | ||||||
|  |             weight = self.weight[:expected_input_dim] | ||||||
|  |             bias = self.bias[:expected_input_dim] | ||||||
|  |         else: | ||||||
|  |             weight, bias = None, None | ||||||
|  |         return F.layer_norm(input, (expected_input_dim,), weight, bias, self.eps) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         return F.layer_norm(input, (self.in_dim,), self.weight, self.bias, self.eps) | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "{in_dim}, eps={eps}, " "elementwise_affine={elementwise_affine}".format( | ||||||
|  |             in_dim=self._in_dim, | ||||||
|  |             eps=self._eps, | ||||||
|  |             elementwise_affine=self._elementwise_affine, | ||||||
|  |         ) | ||||||
							
								
								
									
										100
									
								
								lib/xlayers/super_transformer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								lib/xlayers/super_transformer.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,100 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
|  | ##################################################### | ||||||
|  | from __future__ import division | ||||||
|  | from __future__ import print_function | ||||||
|  |  | ||||||
|  | import math | ||||||
|  | from functools import partial | ||||||
|  | from typing import Optional, Callable | ||||||
|  |  | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | import torch.nn.functional as F | ||||||
|  |  | ||||||
|  | import spaces | ||||||
|  | from .super_module import IntSpaceType | ||||||
|  | from .super_module import BoolSpaceType | ||||||
|  | from .super_module import SuperModule | ||||||
|  | from .super_linear import SuperMLPv2 | ||||||
|  | from .super_norm import SuperLayerNorm1D | ||||||
|  | from .super_attention import SuperAttention | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperTransformerEncoderLayer(SuperModule): | ||||||
|  |     """TransformerEncoderLayer is made up of self-attn and feedforward network. | ||||||
|  |     This is a super model for TransformerEncoderLayer that can support search for the transformer encoder layer. | ||||||
|  |  | ||||||
|  |     Reference: | ||||||
|  |       - Paper: Attention Is All You Need, NeurIPS 2017 | ||||||
|  |       - PyTorch Implementation: https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer | ||||||
|  |  | ||||||
|  |     Details: | ||||||
|  |       MHA -> residual -> norm -> MLP -> residual -> norm | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, | ||||||
|  |         input_dim: IntSpaceType, | ||||||
|  |         output_dim: IntSpaceType, | ||||||
|  |         num_heads: IntSpaceType, | ||||||
|  |         qkv_bias: BoolSpaceType = False, | ||||||
|  |         mlp_hidden_multiplier: IntSpaceType = 4, | ||||||
|  |         drop: Optional[float] = None, | ||||||
|  |         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||||
|  |     ): | ||||||
|  |         super(SuperTransformerEncoderLayer, self).__init__() | ||||||
|  |         self.mha = SuperAttention( | ||||||
|  |             input_dim, | ||||||
|  |             input_dim, | ||||||
|  |             num_heads=num_heads, | ||||||
|  |             qkv_bias=qkv_bias, | ||||||
|  |             attn_drop=drop, | ||||||
|  |             proj_drop=drop, | ||||||
|  |         ) | ||||||
|  |         self.drop1 = nn.Dropout(drop or 0.0) | ||||||
|  |         self.norm1 = SuperLayerNorm1D(input_dim) | ||||||
|  |         self.mlp = SuperMLPv2( | ||||||
|  |             input_dim, | ||||||
|  |             hidden_multiplier=mlp_hidden_multiplier, | ||||||
|  |             out_features=output_dim, | ||||||
|  |             act_layer=act_layer, | ||||||
|  |             drop=drop, | ||||||
|  |         ) | ||||||
|  |         self.drop2 = nn.Dropout(drop or 0.0) | ||||||
|  |         self.norm2 = SuperLayerNorm1D(output_dim) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         root_node = spaces.VirtualNode(id(self)) | ||||||
|  |         xdict = dict( | ||||||
|  |             mha=self.mha.abstract_search_space, | ||||||
|  |             norm1=self.norm1.abstract_search_space, | ||||||
|  |             mlp=self.mlp.abstract_search_space, | ||||||
|  |             norm2=self.norm2.abstract_search_space, | ||||||
|  |         ) | ||||||
|  |         for key, space in xdict.items(): | ||||||
|  |             if not spaces.is_determined(space): | ||||||
|  |                 root_node.append(key, space) | ||||||
|  |         return root_node | ||||||
|  |  | ||||||
|  |     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||||
|  |         super(SuperTransformerEncoderLayer, self).apply_candidate(abstract_child) | ||||||
|  |         valid_keys = ["mha", "norm1", "mlp", "norm2"] | ||||||
|  |         for key in valid_keys: | ||||||
|  |             if key in abstract_child: | ||||||
|  |                 getattr(self, key).apply_candidate(abstract_child[key]) | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         # multi-head attention | ||||||
|  |         x = self.mha(input) | ||||||
|  |         x = x + self.drop1(x) | ||||||
|  |         x = self.norm1(x) | ||||||
|  |         # feed-forward layer | ||||||
|  |         x = self.mlp(x) | ||||||
|  |         x = x + self.drop2(x) | ||||||
|  |         x = self.norm2(x) | ||||||
|  |         return x | ||||||
| @@ -1,93 +0,0 @@ | |||||||
| { |  | ||||||
|  "cells": [ |  | ||||||
|   { |  | ||||||
|    "cell_type": "code", |  | ||||||
|    "execution_count": 1, |  | ||||||
|    "metadata": {}, |  | ||||||
|    "outputs": [ |  | ||||||
|     { |  | ||||||
|      "name": "stdout", |  | ||||||
|      "output_type": "stream", |  | ||||||
|      "text": [ |  | ||||||
|       "library path: /Users/xuanyidong/Desktop/XAutoDL/lib\n" |  | ||||||
|      ] |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |  | ||||||
|     "#####################################################\n", |  | ||||||
|     "# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #\n", |  | ||||||
|     "#####################################################\n", |  | ||||||
|     "import abc, os, sys\n", |  | ||||||
|     "from pathlib import Path\n", |  | ||||||
|     "\n", |  | ||||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", |  | ||||||
|     "\n", |  | ||||||
|     "lib_dir = (Path(__file__).parent / \"..\" / \"lib\").resolve()\n", |  | ||||||
|     "print(\"library path: {:}\".format(lib_dir))\n", |  | ||||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", |  | ||||||
|     "if str(lib_dir) not in sys.path:\n", |  | ||||||
|     "    sys.path.insert(0, str(lib_dir))" |  | ||||||
|    ] |  | ||||||
|   }, |  | ||||||
|   { |  | ||||||
|    "cell_type": "code", |  | ||||||
|    "execution_count": 2, |  | ||||||
|    "metadata": {}, |  | ||||||
|    "outputs": [ |  | ||||||
|     { |  | ||||||
|      "ename": "AttributeError", |  | ||||||
|      "evalue": "default", |  | ||||||
|      "output_type": "error", |  | ||||||
|      "traceback": [ |  | ||||||
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |  | ||||||
|       "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)", |  | ||||||
|       "\u001b[0;32m~/Desktop/XAutoDL/notebooks/spaces\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0mout_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCategorical\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m24\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m36\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      7\u001b[0m \u001b[0mbias\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCategorical\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSuperLinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      9\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |  | ||||||
|       "\u001b[0;32m~/Desktop/XAutoDL/lib/layers/super_mlp.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, in_features, out_features, bias)\u001b[0m\n\u001b[1;32m     26\u001b[0m         \u001b[0mbias\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mBoolSpaceType\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     27\u001b[0m     ) -> None:\n\u001b[0;32m---> 28\u001b[0;31m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mSuperLinear\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     29\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     30\u001b[0m         \u001b[0;31m# the raw input args\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |  | ||||||
|       "\u001b[0;32m~/Desktop/XAutoDL/lib/layers/super_module.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m     20\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     21\u001b[0m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mSuperModule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_super_run_type\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSuperRunMode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     24\u001b[0m     \u001b[0;34m@\u001b[0m\u001b[0mabc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |  | ||||||
|       "\u001b[0;32m~/anaconda3/lib/python3.8/enum.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(cls, name)\u001b[0m\n\u001b[1;32m    339\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_member_map_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    340\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 341\u001b[0;31m             \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    342\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    343\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |  | ||||||
|       "\u001b[0;31mAttributeError\u001b[0m: default" |  | ||||||
|      ] |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |  | ||||||
|     "# Test the Linear layer\n", |  | ||||||
|     "import spaces\n", |  | ||||||
|     "from layers.super_core import SuperLinear\n", |  | ||||||
|     "from layers.super_module import SuperRunMode\n", |  | ||||||
|     "\n", |  | ||||||
|     "out_features = spaces.Categorical(12, 24, 36)\n", |  | ||||||
|     "bias = spaces.Categorical(True, False)\n", |  | ||||||
|     "model = SuperLinear(10, out_features, bias=bias)\n", |  | ||||||
|     "print(model)" |  | ||||||
|    ] |  | ||||||
|   }, |  | ||||||
|   { |  | ||||||
|    "cell_type": "code", |  | ||||||
|    "execution_count": null, |  | ||||||
|    "metadata": {}, |  | ||||||
|    "outputs": [], |  | ||||||
|    "source": [] |  | ||||||
|   } |  | ||||||
|  ], |  | ||||||
|  "metadata": { |  | ||||||
|   "kernelspec": { |  | ||||||
|    "display_name": "Python 3", |  | ||||||
|    "language": "python", |  | ||||||
|    "name": "python3" |  | ||||||
|   }, |  | ||||||
|   "language_info": { |  | ||||||
|    "codemirror_mode": { |  | ||||||
|     "name": "ipython", |  | ||||||
|     "version": 3 |  | ||||||
|    }, |  | ||||||
|    "file_extension": ".py", |  | ||||||
|    "mimetype": "text/x-python", |  | ||||||
|    "name": "python", |  | ||||||
|    "nbconvert_exporter": "python", |  | ||||||
|    "pygments_lexer": "ipython3", |  | ||||||
|    "version": "3.8.3" |  | ||||||
|   } |  | ||||||
|  }, |  | ||||||
|  "nbformat": 4, |  | ||||||
|  "nbformat_minor": 4 |  | ||||||
| } |  | ||||||
							
								
								
									
										102
									
								
								notebooks/spaces/random-search-transformer.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								notebooks/spaces/random-search-transformer.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 1, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "library path: /Users/xuanyidong/Desktop/XAutoDL/lib\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "#####################################################\n", | ||||||
|  |     "# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #\n", | ||||||
|  |     "#####################################################\n", | ||||||
|  |     "import abc, os, sys\n", | ||||||
|  |     "from pathlib import Path\n", | ||||||
|  |     "\n", | ||||||
|  |     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||||
|  |     "\n", | ||||||
|  |     "lib_dir = (Path(__file__).parent / \"..\" / \"lib\").resolve()\n", | ||||||
|  |     "print(\"library path: {:}\".format(lib_dir))\n", | ||||||
|  |     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||||
|  |     "if str(lib_dir) not in sys.path:\n", | ||||||
|  |     "    sys.path.insert(0, str(lib_dir))" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 2, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "1.7.0\n", | ||||||
|  |       "True\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "set()\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "OrderedDict()\n", | ||||||
|  |       "OrderedDict()\n" | ||||||
|  |      ] | ||||||
|  |     }, | ||||||
|  |     { | ||||||
|  |      "name": "stderr", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "/Users/xuanyidong/anaconda3/lib/python3.8/site-packages/torch/nn/modules/container.py:551: UserWarning: Setting attributes on ParameterDict is not supported.\n", | ||||||
|  |       "  warnings.warn(\"Setting attributes on ParameterDict is not supported.\")\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "# Test the Linear layer\n", | ||||||
|  |     "import spaces\n", | ||||||
|  |     "import torch\n", | ||||||
|  |     "from xlayers import super_core\n", | ||||||
|  |     "\n", | ||||||
|  |     "print(torch.__version__)\n", | ||||||
|  |     "mlp = super_core.SuperMLPv2(10, 12, 32)" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": null, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.8.3" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 4 | ||||||
|  | } | ||||||
							
								
								
									
										71
									
								
								tests/test_super_att.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								tests/test_super_att.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
|  | ##################################################### | ||||||
|  | # pytest ./tests/test_super_model.py -s             # | ||||||
|  | ##################################################### | ||||||
|  | import sys, random | ||||||
|  | import unittest | ||||||
|  | from parameterized import parameterized | ||||||
|  | import pytest | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||||
|  | print("library path: {:}".format(lib_dir)) | ||||||
|  | if str(lib_dir) not in sys.path: | ||||||
|  |     sys.path.insert(0, str(lib_dir)) | ||||||
|  |  | ||||||
|  | import torch | ||||||
|  | from xlayers import super_core | ||||||
|  | import spaces | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class TestSuperAttention(unittest.TestCase): | ||||||
|  |     """Test the super attention layer.""" | ||||||
|  |  | ||||||
|  |     def _internal_func(self, inputs, model): | ||||||
|  |         outputs = model(inputs) | ||||||
|  |         abstract_space = model.abstract_search_space | ||||||
|  |         print( | ||||||
|  |             "The abstract search space for SuperAttention is:\n{:}".format( | ||||||
|  |                 abstract_space | ||||||
|  |             ) | ||||||
|  |         ) | ||||||
|  |         abstract_space.clean_last() | ||||||
|  |         abstract_child = abstract_space.random(reuse_last=True) | ||||||
|  |         print("The abstract child program is:\n{:}".format(abstract_child)) | ||||||
|  |         model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||||
|  |         model.apply_candidate(abstract_child) | ||||||
|  |         outputs = model(inputs) | ||||||
|  |         return abstract_child, outputs | ||||||
|  |  | ||||||
|  |     def test_super_attention(self): | ||||||
|  |         proj_dim = spaces.Categorical(12, 24, 36) | ||||||
|  |         num_heads = spaces.Categorical(2, 4, 6) | ||||||
|  |         model = super_core.SuperAttention(10, proj_dim, num_heads) | ||||||
|  |         print(model) | ||||||
|  |         model.apply_verbose(True) | ||||||
|  |  | ||||||
|  |         inputs = torch.rand(4, 20, 10)  # batch size, sequence length, channel | ||||||
|  |         abstract_child, outputs = self._internal_func(inputs, model) | ||||||
|  |         output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) | ||||||
|  |         self.assertEqual(tuple(outputs.shape), output_shape) | ||||||
|  |  | ||||||
|  |     @parameterized.expand([[6], [12], [24], [48]]) | ||||||
|  |     def test_transformer_encoder(self, input_dim): | ||||||
|  |         output_dim = spaces.Categorical(12, 24, 36) | ||||||
|  |         model = super_core.SuperTransformerEncoderLayer( | ||||||
|  |             input_dim, | ||||||
|  |             output_dim=output_dim, | ||||||
|  |             num_heads=spaces.Categorical(2, 4, 6), | ||||||
|  |             mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||||
|  |         ) | ||||||
|  |         print(model) | ||||||
|  |         model.apply_verbose(True) | ||||||
|  |         inputs = torch.rand(4, 20, input_dim) | ||||||
|  |         abstract_child, outputs = self._internal_func(inputs, model) | ||||||
|  |         output_shape = ( | ||||||
|  |             4, | ||||||
|  |             20, | ||||||
|  |             output_dim.abstract(reuse_last=True).random(reuse_last=True).value, | ||||||
|  |         ) | ||||||
|  |         self.assertEqual(tuple(outputs.shape), output_shape) | ||||||
| @@ -51,10 +51,10 @@ class TestSuperLinear(unittest.TestCase): | |||||||
|         outputs = model(inputs) |         outputs = model(inputs) | ||||||
|         self.assertEqual(tuple(outputs.shape), output_shape) |         self.assertEqual(tuple(outputs.shape), output_shape) | ||||||
|  |  | ||||||
|     def test_super_mlp(self): |     def test_super_mlp_v1(self): | ||||||
|         hidden_features = spaces.Categorical(12, 24, 36) |         hidden_features = spaces.Categorical(12, 24, 36) | ||||||
|         out_features = spaces.Categorical(24, 36, 48) |         out_features = spaces.Categorical(24, 36, 48) | ||||||
|         mlp = super_core.SuperMLP(10, hidden_features, out_features) |         mlp = super_core.SuperMLPv1(10, hidden_features, out_features) | ||||||
|         print(mlp) |         print(mlp) | ||||||
|         mlp.apply_verbose(True) |         mlp.apply_verbose(True) | ||||||
|         self.assertTrue(mlp.fc1._out_features, mlp.fc2._in_features) |         self.assertTrue(mlp.fc1._out_features, mlp.fc2._in_features) | ||||||
| @@ -64,7 +64,9 @@ class TestSuperLinear(unittest.TestCase): | |||||||
|         self.assertEqual(tuple(outputs.shape), (4, 48)) |         self.assertEqual(tuple(outputs.shape), (4, 48)) | ||||||
|  |  | ||||||
|         abstract_space = mlp.abstract_search_space |         abstract_space = mlp.abstract_search_space | ||||||
|         print("The abstract search space for SuperMLP is:\n{:}".format(abstract_space)) |         print( | ||||||
|  |             "The abstract search space for SuperMLPv1 is:\n{:}".format(abstract_space) | ||||||
|  |         ) | ||||||
|         self.assertEqual( |         self.assertEqual( | ||||||
|             abstract_space["fc1"]["_out_features"], |             abstract_space["fc1"]["_out_features"], | ||||||
|             abstract_space["fc2"]["_in_features"], |             abstract_space["fc2"]["_in_features"], | ||||||
| @@ -88,28 +90,28 @@ class TestSuperLinear(unittest.TestCase): | |||||||
|         output_shape = (4, abstract_child["fc2"]["_out_features"].value) |         output_shape = (4, abstract_child["fc2"]["_out_features"].value) | ||||||
|         self.assertEqual(tuple(outputs.shape), output_shape) |         self.assertEqual(tuple(outputs.shape), output_shape) | ||||||
|  |  | ||||||
|     def test_super_attention(self): |     def test_super_mlp_v2(self): | ||||||
|         proj_dim = spaces.Categorical(12, 24, 36) |         hidden_multiplier = spaces.Categorical(1.0, 2.0, 3.0) | ||||||
|         num_heads = spaces.Categorical(2, 4, 6) |         out_features = spaces.Categorical(24, 36, 48) | ||||||
|         model = super_core.SuperAttention(10, proj_dim, num_heads) |         mlp = super_core.SuperMLPv2(10, hidden_multiplier, out_features) | ||||||
|         print(model) |         print(mlp) | ||||||
|         model.apply_verbose(True) |         mlp.apply_verbose(True) | ||||||
|  |  | ||||||
|         inputs = torch.rand(4, 20, 10)  # batch size, sequence length, channel |         inputs = torch.rand(4, 10) | ||||||
|         outputs = model(inputs) |         outputs = mlp(inputs) | ||||||
|  |         self.assertEqual(tuple(outputs.shape), (4, 48)) | ||||||
|  |  | ||||||
|         abstract_space = model.abstract_search_space |         abstract_space = mlp.abstract_search_space | ||||||
|         print( |         print( | ||||||
|             "The abstract search space for SuperAttention is:\n{:}".format( |             "The abstract search space for SuperMLPv2 is:\n{:}".format(abstract_space) | ||||||
|                 abstract_space |  | ||||||
|             ) |  | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|         abstract_space.clean_last() |         abstract_space.clean_last() | ||||||
|         abstract_child = abstract_space.random(reuse_last=True) |         abstract_child = abstract_space.random(reuse_last=True) | ||||||
|         print("The abstract child program is:\n{:}".format(abstract_child)) |         print("The abstract child program is:\n{:}".format(abstract_child)) | ||||||
|  |  | ||||||
|         model.set_super_run_type(super_core.SuperRunMode.Candidate) |         mlp.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||||
|         model.apply_candidate(abstract_child) |         mlp.apply_candidate(abstract_child) | ||||||
|         outputs = model(inputs) |         outputs = mlp(inputs) | ||||||
|         output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) |         output_shape = (4, abstract_child["_out_features"].value) | ||||||
|         self.assertEqual(tuple(outputs.shape), output_shape) |         self.assertEqual(tuple(outputs.shape), output_shape) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user