Update plots for NATS-Bench
This commit is contained in:
		| @@ -33,7 +33,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | |||||||
|   alg2name['REA'] = 'R-EA-SS3' |   alg2name['REA'] = 'R-EA-SS3' | ||||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.01' |   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||||
|   alg2name['RANDOM'] = 'RANDOM' |   alg2name['RANDOM'] = 'RANDOM' | ||||||
|   alg2name['BOHB'] = 'BOHB' |   # alg2name['BOHB'] = 'BOHB' | ||||||
|   for alg, name in alg2name.items(): |   for alg, name in alg2name.items(): | ||||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') |     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||||
|     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) |     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||||
| @@ -76,11 +76,18 @@ y_max_s = {('cifar10', 'tss'): 94.5, | |||||||
|            ('ImageNet16-120', 'tss'): 44, |            ('ImageNet16-120', 'tss'): 44, | ||||||
|            ('ImageNet16-120', 'sss'): 46} |            ('ImageNet16-120', 'sss'): 46} | ||||||
|  |  | ||||||
|  | x_axis_s = {('cifar10', 'tss'): 200, | ||||||
|  |             ('cifar10', 'sss'): 200, | ||||||
|  |             ('cifar100', 'tss'): 400, | ||||||
|  |             ('cifar100', 'sss'): 400, | ||||||
|  |             ('ImageNet16-120', 'tss'): 1200, | ||||||
|  |             ('ImageNet16-120', 'sss'): 600} | ||||||
|  |  | ||||||
| name2label = {'cifar10': 'CIFAR-10', | name2label = {'cifar10': 'CIFAR-10', | ||||||
|               'cifar100': 'CIFAR-100', |               'cifar100': 'CIFAR-100', | ||||||
|               'ImageNet16-120': 'ImageNet-16-120'} |               'ImageNet16-120': 'ImageNet-16-120'} | ||||||
|  |  | ||||||
| def visualize_curve(api, vis_save_dir, search_space, max_time): | def visualize_curve(api, vis_save_dir, search_space): | ||||||
|   vis_save_dir = vis_save_dir.resolve() |   vis_save_dir = vis_save_dir.resolve() | ||||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) |   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
| @@ -89,28 +96,36 @@ def visualize_curve(api, vis_save_dir, search_space, max_time): | |||||||
|   LabelSize, LegendFontsize = 16, 16 |   LabelSize, LegendFontsize = 16, 16 | ||||||
|  |  | ||||||
|   def sub_plot_fn(ax, dataset): |   def sub_plot_fn(ax, dataset): | ||||||
|  |     xdataset, max_time = dataset.split('-T') | ||||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) |     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||||
|     alg2accuracies = OrderedDict() |     alg2accuracies = OrderedDict() | ||||||
|     total_tickets = 150 |     total_tickets = 150 | ||||||
|     time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)] |     time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||||
|     colors = ['b', 'g', 'c', 'm', 'y'] |     colors = ['b', 'g', 'c', 'm', 'y'] | ||||||
|     ax.set_xlim(0, 200) |     ax.set_xlim(0, x_axis_s[(xdataset, search_space)]) | ||||||
|     ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) |     ax.set_ylim(y_min_s[(xdataset, search_space)], | ||||||
|  |                 y_max_s[(xdataset, search_space)]) | ||||||
|     for idx, (alg, data) in enumerate(alg2data.items()): |     for idx, (alg, data) in enumerate(alg2data.items()): | ||||||
|       print('plot alg : {:}'.format(alg)) |       print('{:} plot alg : {:}'.format(time_string(), alg)) | ||||||
|       accuracies = [] |       accuracies = [] | ||||||
|       for ticket in time_tickets: |       for ticket in time_tickets: | ||||||
|         accuracy = query_performance(api, data, dataset, ticket) |         accuracy = query_performance(api, data, xdataset, ticket) | ||||||
|         accuracies.append(accuracy) |         accuracies.append(accuracy) | ||||||
|       alg2accuracies[alg] = accuracies |       alg2accuracies[alg] = accuracies | ||||||
|       ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg)) |       ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||||
|       ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize) |       ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize) | ||||||
|       ax.set_ylabel('Test accuracy on {:}'.format(name2label[dataset]), fontsize=LabelSize) |       ax.set_ylabel('Test accuracy on {:}'.format(name2label[xdataset]), fontsize=LabelSize) | ||||||
|       ax.set_title('Searching results on {:}'.format(name2label[dataset]), fontsize=LabelSize+4) |       ax.set_title('Searching results on {:}'.format(name2label[xdataset]), fontsize=LabelSize+4) | ||||||
|     ax.legend(loc=4, fontsize=LegendFontsize) |     ax.legend(loc=4, fontsize=LegendFontsize) | ||||||
|  |  | ||||||
|   fig, axs = plt.subplots(1, 3, figsize=figsize) |   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||||
|   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] |   # datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||||
|  |   if search_space == 'tss': | ||||||
|  |     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T120000'] | ||||||
|  |   elif search_space == 'sss': | ||||||
|  |     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T60000'] | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Unknown search space: {:}'.format(search_space)) | ||||||
|   for dataset, ax in zip(datasets, axs): |   for dataset, ax in zip(datasets, axs): | ||||||
|     sub_plot_fn(ax, dataset) |     sub_plot_fn(ax, dataset) | ||||||
|     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) |     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) | ||||||
| @@ -121,13 +136,12 @@ def visualize_curve(api, vis_save_dir, search_space, max_time): | |||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) |   parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||||
|   parser.add_argument('--search_space', type=str,   choices=['tss', 'sss'], help='Choose the search space.') |   parser.add_argument('--search_space', type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||||
|   parser.add_argument('--max_time',     type=float, default=20000, help='The maximum time budget.') |  | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
|  |  | ||||||
|   save_dir = Path(args.save_dir) |   save_dir = Path(args.save_dir) | ||||||
|  |  | ||||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) |   api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||||
|   visualize_curve(api, save_dir, args.search_space, args.max_time) |   visualize_curve(api, save_dir, args.search_space) | ||||||
|   | |||||||
| @@ -167,7 +167,7 @@ if __name__ == '__main__': | |||||||
|   parser.add_argument('--rand_seed',          type=int,  default=-1, help='manual seed') |   parser.add_argument('--rand_seed',          type=int,  default=-1, help='manual seed') | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
|    |    | ||||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) |   api = create(None, args.search_space, fast_mode=False, verbose=False) | ||||||
|  |  | ||||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), |   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), | ||||||
|                                '{:}-T{:}'.format(args.dataset, args.time_budget), 'BOHB') |                                '{:}-T{:}'.format(args.dataset, args.time_budget), 'BOHB') | ||||||
|   | |||||||
| @@ -14,55 +14,24 @@ alg_type=$1 | |||||||
|  |  | ||||||
| if [ "$alg_type" == "mul" ]; then | if [ "$alg_type" == "mul" ]; then | ||||||
|   # datasets="cifar10 cifar100 ImageNet16-120" |   # datasets="cifar10 cifar100 ImageNet16-120" | ||||||
|  |   run_four_algorithms(){ | ||||||
|  |     dataset=$1 | ||||||
|  |     search_space=$2 | ||||||
|  |     time_budget=$3 | ||||||
|  |     python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 | ||||||
|  |     python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 | ||||||
|  |     python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} | ||||||
|  |     python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 | ||||||
|  |   } | ||||||
|   # The topology search space |   # The topology search space | ||||||
|   dataset="cifar10" |   run_four_algorithms "cifar10"        "tss" "20000" | ||||||
|   search_space="tss" |   run_four_algorithms "cifar100"       "tss" "40000" | ||||||
|   time_budget="20000" |   run_four_algorithms "ImageNet16-120" "tss" "120000" | ||||||
|   python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 |  | ||||||
|   python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |  | ||||||
|   python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} |  | ||||||
|   python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |  | ||||||
|  |  | ||||||
|   dataset="cifar100" |  | ||||||
|   search_space="tss" |  | ||||||
|   time_budget="40000" |  | ||||||
|   python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 |  | ||||||
|   python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |  | ||||||
|   python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} |  | ||||||
|   python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |  | ||||||
|  |  | ||||||
|   dataset="ImageNet16-120" |  | ||||||
|   search_space="tss" |  | ||||||
|   time_budget="120000" |  | ||||||
|   python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 |  | ||||||
|   python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |  | ||||||
|   python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} |  | ||||||
|   python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |  | ||||||
|  |  | ||||||
|   # The size search space |   # The size search space | ||||||
|   dataset="cifar10" |   run_four_algorithms "cifar10"        "sss" "20000" | ||||||
|   search_space="sss" |   run_four_algorithms "cifar100"       "sss" "40000" | ||||||
|   time_budget="20000" |   run_four_algorithms "ImageNet16-120" "sss" "60000" | ||||||
|   python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 |  | ||||||
|   python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |  | ||||||
|   python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} |  | ||||||
|   python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |  | ||||||
|  |  | ||||||
|   dataset="cifar100" |  | ||||||
|   search_space="sss" |  | ||||||
|   time_budget="40000" |  | ||||||
|   python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 |  | ||||||
|   python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |  | ||||||
|   python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} |  | ||||||
|   python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |  | ||||||
|  |  | ||||||
|   dataset="ImageNet16-120" |  | ||||||
|   search_space="tss" |  | ||||||
|   time_budget="60000" |  | ||||||
|   python ./exps/NATS-algos/reinforce.py       --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --learning_rate 0.01 |  | ||||||
|   python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |  | ||||||
|   python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} |  | ||||||
|   python ./exps/NATS-algos/bohb.py            --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |  | ||||||
|   # python exps/experimental/vis-bench-algos.py --search_space tss |   # python exps/experimental/vis-bench-algos.py --search_space tss | ||||||
|   # python exps/experimental/vis-bench-algos.py --search_space sss |   # python exps/experimental/vis-bench-algos.py --search_space sss | ||||||
| else | else | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user