Update q-config and black for procedures/utils

This commit is contained in:
D-X-Y 2021-03-07 03:09:47 +00:00
parent 349d9fcc9f
commit 55c9734c31
22 changed files with 1938 additions and 1390 deletions

View File

@ -147,5 +147,8 @@ If you find that this project helps your research, please consider citing the re
If you want to contribute to this repo, please see [CONTRIBUTING.md](.github/CONTRIBUTING.md).
Besides, please follow [CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md).
We use `[black](https://github.com/psf/black)` for Python code formatter.
Please use `black . -l 120`.
# License
The entire codebase is under the [MIT license](LICENSE.md).

View File

@ -0,0 +1,82 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market all
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy.strategy
kwargs:
topk: 50
n_drop: 5
backtest:
verbose: False
limit_threshold: 0.095
account: 100000000
benchmark: *benchmark
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: DNNModelPytorch
module_path: qlib.contrib.model.pytorch_nn
kwargs:
loss: mse
input_dim: 360
output_dim: 1
lr: 0.002
lr_decay: 0.96
lr_decay_steps: 100
optimizer: adam
max_steps: 8000
batch_size: 4096
GPU: 0
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs: {}
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config

View File

@ -0,0 +1,85 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market all
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy.strategy
kwargs:
topk: 50
n_drop: 5
backtest:
verbose: False
limit_threshold: 0.095
account: 100000000
benchmark: *benchmark
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: SFM
module_path: qlib.contrib.model.pytorch_sfm
kwargs:
d_feat: 6
hidden_size: 64
output_dim: 32
freq_dim: 25
dropout_W: 0.5
dropout_U: 0.5
n_epochs: 20
lr: 1e-3
batch_size: 1600
early_stop: 20
eval_steps: 5
loss: mse
optimizer: adam
GPU: 0
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs: {}
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config

View File

@ -4,6 +4,8 @@
# python exps/trading/baselines.py --alg GRU
# python exps/trading/baselines.py --alg LSTM
# python exps/trading/baselines.py --alg ALSTM
# python exps/trading/baselines.py --alg MLP
# python exps/trading/baselines.py --alg SFM
# python exps/trading/baselines.py --alg XGBoost
# python exps/trading/baselines.py --alg LightGBM
#####################################################
@ -17,6 +19,10 @@ lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures.q_exps import update_gpu
from procedures.q_exps import update_market
from procedures.q_exps import run_exp
import qlib
from qlib.utils import init_instance_by_config
from qlib.workflow import R
@ -31,15 +37,19 @@ def retrieve_configs():
alg2names = OrderedDict()
alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml"
alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml"
alg2names["MLP"] = "workflow_config_mlp_Alpha360.yaml"
# A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017
alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml"
# XGBoost: A Scalable Tree Boosting System, KDD-2016
alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml"
# LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017
alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml"
# State Frequency Memory (SFM): Stock Price Prediction via Discovering Multi-Frequency Trading Patterns, KDD-2017
alg2names["SFM"] = "workflow_config_sfm_Alpha360.yaml"
# find the yaml paths
alg2paths = OrderedDict()
print("Start retrieving the algorithm configurations")
for idx, (alg, name) in enumerate(alg2names.items()):
path = config_dir / name
assert path.exists(), "{:} does not exist.".format(path)
@ -48,56 +58,6 @@ def retrieve_configs():
return alg2paths
def update_gpu(config, gpu):
config = config.copy()
if "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
return config
def update_market(config, market):
config = config.copy()
config["market"] = market
config["data_handler_config"]["instruments"] = market
return config
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
# model initiaiton
print("")
print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
print("dataset={:}".format(dataset))
model = init_instance_by_config(task_config["model"])
# start exp
with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri):
log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name)
set_log_basic_config(log_file)
# train model
R.log_params(**flatten_dict(task_config))
model.fit(dataset)
recorder = R.get_recorder()
R.save_objects(**{"model.pkl": model})
# generate records: prediction, backtest, and analysis
for record in task_config["record"]:
record = record.copy()
if record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)
sr = init_instance_by_config(record)
sr.generate()
else:
rconf = {"recorder": recorder}
record["kwargs"].update(rconf)
ar = init_instance_by_config(record)
ar.generate()
def main(xargs, exp_yaml):
assert Path(exp_yaml).exists(), "{:} does not exist.".format(exp_yaml)

View File

@ -1,25 +1,36 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from .starts import prepare_seed, prepare_logger, get_machine_info, save_checkpoint, copy_checkpoint
from .starts import prepare_seed
from .starts import prepare_logger
from .starts import get_machine_info
from .starts import save_checkpoint
from .starts import copy_checkpoint
from .optimizers import get_optim_scheduler
from .funcs_nasbench import evaluate_for_seed as bench_evaluate_for_seed
from .funcs_nasbench import pure_evaluate as bench_pure_evaluate
from .funcs_nasbench import get_nas_bench_loaders
def get_procedures(procedure):
from .basic_main import basic_train, basic_valid
from .search_main import search_train, search_valid
from .search_main_v2 import search_train_v2
from .simple_KD_main import simple_KD_train, simple_KD_valid
train_funcs = {'basic' : basic_train, \
'search': search_train,'Simple-KD': simple_KD_train, \
'search-v2': search_train_v2}
valid_funcs = {'basic' : basic_valid, \
'search': search_valid,'Simple-KD': simple_KD_valid, \
'search-v2': search_valid}
train_func = train_funcs[procedure]
valid_func = valid_funcs[procedure]
return train_func, valid_func
def get_procedures(procedure):
from .basic_main import basic_train, basic_valid
from .search_main import search_train, search_valid
from .search_main_v2 import search_train_v2
from .simple_KD_main import simple_KD_train, simple_KD_valid
train_funcs = {
"basic": basic_train,
"search": search_train,
"Simple-KD": simple_KD_train,
"search-v2": search_train_v2,
}
valid_funcs = {
"basic": basic_valid,
"search": search_valid,
"Simple-KD": simple_KD_valid,
"search-v2": search_valid,
}
train_func = train_funcs[procedure]
valid_func = valid_funcs[procedure]
return train_func, valid_func

View File

@ -3,73 +3,100 @@
##################################################
import os, sys, time, torch
from log_utils import AverageMeter, time_string
from utils import obtain_accuracy
from utils import obtain_accuracy
def basic_train(xloader, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger):
loss, acc1, acc5 = procedure(xloader, network, criterion, scheduler, optimizer, 'train', optim_config, extra_info, print_freq, logger)
return loss, acc1, acc5
loss, acc1, acc5 = procedure(
xloader, network, criterion, scheduler, optimizer, "train", optim_config, extra_info, print_freq, logger
)
return loss, acc1, acc5
def basic_valid(xloader, network, criterion, optim_config, extra_info, print_freq, logger):
with torch.no_grad():
loss, acc1, acc5 = procedure(xloader, network, criterion, None, None, 'valid', None, extra_info, print_freq, logger)
return loss, acc1, acc5
with torch.no_grad():
loss, acc1, acc5 = procedure(
xloader, network, criterion, None, None, "valid", None, extra_info, print_freq, logger
)
return loss, acc1, acc5
def procedure(xloader, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger):
data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
if mode == 'train':
network.train()
elif mode == 'valid':
network.eval()
else: raise ValueError("The mode is not right : {:}".format(mode))
#logger.log('[{:5s}] config :: auxiliary={:}, message={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, network.module.get_message()))
logger.log('[{:5s}] config :: auxiliary={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1))
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader))
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
if mode == 'train': optimizer.zero_grad()
features, logits = network(inputs)
if isinstance(logits, list):
assert len(logits) == 2, 'logits must has {:} items instead of {:}'.format(2, len(logits))
logits, logits_aux = logits
data_time, batch_time, losses, top1, top5 = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
)
if mode == "train":
network.train()
elif mode == "valid":
network.eval()
else:
logits, logits_aux = logits, None
loss = criterion(logits, targets)
if config is not None and hasattr(config, 'auxiliary') and config.auxiliary > 0:
loss_aux = criterion(logits_aux, targets)
loss += config.auxiliary * loss_aux
if mode == 'train':
loss.backward()
optimizer.step()
raise ValueError("The mode is not right : {:}".format(mode))
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update (prec1.item(), inputs.size(0))
top5.update (prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
# logger.log('[{:5s}] config :: auxiliary={:}, message={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, network.module.get_message()))
logger.log(
"[{:5s}] config :: auxiliary={:}".format(mode, config.auxiliary if hasattr(config, "auxiliary") else -1)
)
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == "train":
scheduler.update(None, 1.0 * i / len(xloader))
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
if i % print_freq == 0 or (i+1) == len(xloader):
Sstr = ' {:5s} '.format(mode.upper()) + time_string() + ' [{:}][{:03d}/{:03d}]'.format(extra_info, i, len(xloader))
if scheduler is not None:
Sstr += ' {:}'.format(scheduler.get_min_info())
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5)
Istr = 'Size={:}'.format(list(inputs.size()))
logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr)
if mode == "train":
optimizer.zero_grad()
logger.log(' **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(mode=mode.upper(), top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg))
return losses.avg, top1.avg, top5.avg
features, logits = network(inputs)
if isinstance(logits, list):
assert len(logits) == 2, "logits must has {:} items instead of {:}".format(2, len(logits))
logits, logits_aux = logits
else:
logits, logits_aux = logits, None
loss = criterion(logits, targets)
if config is not None and hasattr(config, "auxiliary") and config.auxiliary > 0:
loss_aux = criterion(logits_aux, targets)
loss += config.auxiliary * loss_aux
if mode == "train":
loss.backward()
optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0 or (i + 1) == len(xloader):
Sstr = (
" {:5s} ".format(mode.upper())
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))
)
if scheduler is not None:
Sstr += " {:}".format(scheduler.get_min_info())
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=losses, top1=top1, top5=top5
)
Istr = "Size={:}".format(list(inputs.size()))
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)
logger.log(
" **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format(
mode=mode.upper(), top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg
)
)
return losses.avg, top1.avg, top5.avg

View File

@ -5,199 +5,348 @@ import os, time, copy, torch, pathlib
import datasets
from config_utils import load_config
from procedures import prepare_seed, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net
from procedures import prepare_seed, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net
__all__ = ['evaluate_for_seed', 'pure_evaluate', 'get_nas_bench_loaders']
__all__ = ["evaluate_for_seed", "pure_evaluate", "get_nas_bench_loaders"]
def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()):
data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
latencies, device = [], torch.cuda.current_device()
network.eval()
with torch.no_grad():
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
targets = targets.cuda(device=device, non_blocking=True)
inputs = inputs.cuda(device=device, non_blocking=True)
data_time.update(time.time() - end)
# forward
features, logits = network(inputs)
loss = criterion(logits, targets)
batch_time.update(time.time() - end)
if batch is None or batch == inputs.size(0):
batch = inputs.size(0)
latencies.append( batch_time.val - data_time.val )
# record loss and accuracy
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update (prec1.item(), inputs.size(0))
top5.update (prec5.item(), inputs.size(0))
end = time.time()
if len(latencies) > 2: latencies = latencies[1:]
return losses.avg, top1.avg, top5.avg, latencies
data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
latencies, device = [], torch.cuda.current_device()
network.eval()
with torch.no_grad():
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
targets = targets.cuda(device=device, non_blocking=True)
inputs = inputs.cuda(device=device, non_blocking=True)
data_time.update(time.time() - end)
# forward
features, logits = network(inputs)
loss = criterion(logits, targets)
batch_time.update(time.time() - end)
if batch is None or batch == inputs.size(0):
batch = inputs.size(0)
latencies.append(batch_time.val - data_time.val)
# record loss and accuracy
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
end = time.time()
if len(latencies) > 2:
latencies = latencies[1:]
return losses.avg, top1.avg, top5.avg, latencies
def procedure(xloader, network, criterion, scheduler, optimizer, mode: str):
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
if mode == 'train' : network.train()
elif mode == 'valid': network.eval()
else: raise ValueError("The mode is not right : {:}".format(mode))
device = torch.cuda.current_device()
data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader))
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
if mode == "train":
network.train()
elif mode == "valid":
network.eval()
else:
raise ValueError("The mode is not right : {:}".format(mode))
device = torch.cuda.current_device()
data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == "train":
scheduler.update(None, 1.0 * i / len(xloader))
targets = targets.cuda(device=device, non_blocking=True)
if mode == 'train': optimizer.zero_grad()
# forward
features, logits = network(inputs)
loss = criterion(logits, targets)
# backward
if mode == 'train':
loss.backward()
optimizer.step()
# record loss and accuracy
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update (prec1.item(), inputs.size(0))
top5.update (prec5.item(), inputs.size(0))
# count time
batch_time.update(time.time() - end)
end = time.time()
return losses.avg, top1.avg, top5.avg, batch_time.sum
targets = targets.cuda(device=device, non_blocking=True)
if mode == "train":
optimizer.zero_grad()
# forward
features, logits = network(inputs)
loss = criterion(logits, targets)
# backward
if mode == "train":
loss.backward()
optimizer.step()
# record loss and accuracy
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# count time
batch_time.update(time.time() - end)
end = time.time()
return losses.avg, top1.avg, top5.avg, batch_time.sum
def evaluate_for_seed(arch_config, opt_config, train_loader, valid_loaders, seed: int, logger):
prepare_seed(seed) # random seed
net = get_cell_based_tiny_net(arch_config)
#net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num)
flop, param = get_model_infos(net, opt_config.xshape)
logger.log('Network : {:}'.format(net.get_message()), False)
logger.log('{:} Seed-------------------------- {:} --------------------------'.format(time_string(), seed))
logger.log('FLOP = {:} MB, Param = {:} MB'.format(flop, param))
# train and valid
optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), opt_config)
default_device = torch.cuda.current_device()
network = torch.nn.DataParallel(net, device_ids=[default_device]).cuda(device=default_device)
criterion = criterion.cuda(device=default_device)
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), opt_config.epochs + opt_config.warmup
train_losses, train_acc1es, train_acc5es, valid_losses, valid_acc1es, valid_acc5es = {}, {}, {}, {}, {}, {}
train_times , valid_times, lrs = {}, {}, {}
for epoch in range(total_epoch):
scheduler.update(epoch, 0.0)
lr = min(scheduler.get_lr())
train_loss, train_acc1, train_acc5, train_tm = procedure(train_loader, network, criterion, scheduler, optimizer, 'train')
train_losses[epoch] = train_loss
train_acc1es[epoch] = train_acc1
train_acc5es[epoch] = train_acc5
train_times [epoch] = train_tm
lrs[epoch] = lr
with torch.no_grad():
for key, xloder in valid_loaders.items():
valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(xloder , network, criterion, None, None, 'valid')
valid_losses['{:}@{:}'.format(key,epoch)] = valid_loss
valid_acc1es['{:}@{:}'.format(key,epoch)] = valid_acc1
valid_acc5es['{:}@{:}'.format(key,epoch)] = valid_acc5
valid_times ['{:}@{:}'.format(key,epoch)] = valid_tm
prepare_seed(seed) # random seed
net = get_cell_based_tiny_net(arch_config)
# net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num)
flop, param = get_model_infos(net, opt_config.xshape)
logger.log("Network : {:}".format(net.get_message()), False)
logger.log("{:} Seed-------------------------- {:} --------------------------".format(time_string(), seed))
logger.log("FLOP = {:} MB, Param = {:} MB".format(flop, param))
# train and valid
optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), opt_config)
default_device = torch.cuda.current_device()
network = torch.nn.DataParallel(net, device_ids=[default_device]).cuda(device=default_device)
criterion = criterion.cuda(device=default_device)
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), opt_config.epochs + opt_config.warmup
train_losses, train_acc1es, train_acc5es, valid_losses, valid_acc1es, valid_acc5es = {}, {}, {}, {}, {}, {}
train_times, valid_times, lrs = {}, {}, {}
for epoch in range(total_epoch):
scheduler.update(epoch, 0.0)
lr = min(scheduler.get_lr())
train_loss, train_acc1, train_acc5, train_tm = procedure(
train_loader, network, criterion, scheduler, optimizer, "train"
)
train_losses[epoch] = train_loss
train_acc1es[epoch] = train_acc1
train_acc5es[epoch] = train_acc5
train_times[epoch] = train_tm
lrs[epoch] = lr
with torch.no_grad():
for key, xloder in valid_loaders.items():
valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(
xloder, network, criterion, None, None, "valid"
)
valid_losses["{:}@{:}".format(key, epoch)] = valid_loss
valid_acc1es["{:}@{:}".format(key, epoch)] = valid_acc1
valid_acc5es["{:}@{:}".format(key, epoch)] = valid_acc5
valid_times["{:}@{:}".format(key, epoch)] = valid_tm
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch-1), True) )
logger.log('{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%], lr={:}'.format(time_string(), need_time, epoch, total_epoch, train_loss, train_acc1, train_acc5, valid_loss, valid_acc1, valid_acc5, lr))
info_seed = {'flop' : flop,
'param': param,
'arch_config' : arch_config._asdict(),
'opt_config' : opt_config._asdict(),
'total_epoch' : total_epoch ,
'train_losses': train_losses,
'train_acc1es': train_acc1es,
'train_acc5es': train_acc5es,
'train_times' : train_times,
'valid_losses': valid_losses,
'valid_acc1es': valid_acc1es,
'valid_acc5es': valid_acc5es,
'valid_times' : valid_times,
'learning_rates': lrs,
'net_state_dict': net.state_dict(),
'net_string' : '{:}'.format(net),
'finish-train': True
}
return info_seed
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.avg * (total_epoch - epoch - 1), True))
logger.log(
"{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%], lr={:}".format(
time_string(),
need_time,
epoch,
total_epoch,
train_loss,
train_acc1,
train_acc5,
valid_loss,
valid_acc1,
valid_acc5,
lr,
)
)
info_seed = {
"flop": flop,
"param": param,
"arch_config": arch_config._asdict(),
"opt_config": opt_config._asdict(),
"total_epoch": total_epoch,
"train_losses": train_losses,
"train_acc1es": train_acc1es,
"train_acc5es": train_acc5es,
"train_times": train_times,
"valid_losses": valid_losses,
"valid_acc1es": valid_acc1es,
"valid_acc5es": valid_acc5es,
"valid_times": valid_times,
"learning_rates": lrs,
"net_state_dict": net.state_dict(),
"net_string": "{:}".format(net),
"finish-train": True,
}
return info_seed
def get_nas_bench_loaders(workers):
torch.set_num_threads(workers)
torch.set_num_threads(workers)
root_dir = (pathlib.Path(__file__).parent / '..' / '..').resolve()
torch_dir = pathlib.Path(os.environ['TORCH_HOME'])
# cifar
cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config'
cifar_config = load_config(cifar_config_path, None, None)
get_datasets = datasets.get_datasets # a function to return the dataset
break_line = '-' * 150
print ('{:} Create data-loader for all datasets'.format(time_string()))
print (break_line)
TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1)
print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num))
cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None)
assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14]
temp_dataset = copy.deepcopy(TRAIN_CIFAR10)
temp_dataset.transform = VALID_CIFAR10.transform
# data loader
trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True)
train_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True)
valid_cifar10_loader = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True)
test__cifar10_loader = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)
print ('CIFAR-10 : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size))
print ('CIFAR-10 : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size))
print ('CIFAR-10 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size))
print ('CIFAR-10 : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size))
print (break_line)
# CIFAR-100
TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1)
print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num))
cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None)
assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24]
train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True)
valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True)
test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True)
print ('CIFAR-100 : train-loader has {:3d} batch'.format(len(train_cifar100_loader)))
print ('CIFAR-100 : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader)))
print ('CIFAR-100 : test--loader has {:3d} batch'.format(len(test__cifar100_loader)))
print (break_line)
root_dir = (pathlib.Path(__file__).parent / ".." / "..").resolve()
torch_dir = pathlib.Path(os.environ["TORCH_HOME"])
# cifar
cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config"
cifar_config = load_config(cifar_config_path, None, None)
get_datasets = datasets.get_datasets # a function to return the dataset
break_line = "-" * 150
print("{:} Create data-loader for all datasets".format(time_string()))
print(break_line)
TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets("cifar10", str(torch_dir / "cifar.python"), -1)
print(
"original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num
)
)
cifar10_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None)
assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [
1,
2,
3,
4,
6,
8,
9,
10,
12,
14,
]
temp_dataset = copy.deepcopy(TRAIN_CIFAR10)
temp_dataset.transform = VALID_CIFAR10.transform
# data loader
trainval_cifar10_loader = torch.utils.data.DataLoader(
TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True
)
train_cifar10_loader = torch.utils.data.DataLoader(
TRAIN_CIFAR10,
batch_size=cifar_config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train),
num_workers=workers,
pin_memory=True,
)
valid_cifar10_loader = torch.utils.data.DataLoader(
temp_dataset,
batch_size=cifar_config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid),
num_workers=workers,
pin_memory=True,
)
test__cifar10_loader = torch.utils.data.DataLoader(
VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True
)
print(
"CIFAR-10 : trval-loader has {:3d} batch with {:} per batch".format(
len(trainval_cifar10_loader), cifar_config.batch_size
)
)
print(
"CIFAR-10 : train-loader has {:3d} batch with {:} per batch".format(
len(train_cifar10_loader), cifar_config.batch_size
)
)
print(
"CIFAR-10 : valid-loader has {:3d} batch with {:} per batch".format(
len(valid_cifar10_loader), cifar_config.batch_size
)
)
print(
"CIFAR-10 : test--loader has {:3d} batch with {:} per batch".format(
len(test__cifar10_loader), cifar_config.batch_size
)
)
print(break_line)
# CIFAR-100
TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets("cifar100", str(torch_dir / "cifar.python"), -1)
print(
"original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num
)
)
cifar100_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None)
assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [
0,
2,
6,
7,
9,
11,
12,
17,
20,
24,
]
train_cifar100_loader = torch.utils.data.DataLoader(
TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True
)
valid_cifar100_loader = torch.utils.data.DataLoader(
VALID_CIFAR100,
batch_size=cifar_config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid),
num_workers=workers,
pin_memory=True,
)
test__cifar100_loader = torch.utils.data.DataLoader(
VALID_CIFAR100,
batch_size=cifar_config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest),
num_workers=workers,
pin_memory=True,
)
print("CIFAR-100 : train-loader has {:3d} batch".format(len(train_cifar100_loader)))
print("CIFAR-100 : valid-loader has {:3d} batch".format(len(valid_cifar100_loader)))
print("CIFAR-100 : test--loader has {:3d} batch".format(len(test__cifar100_loader)))
print(break_line)
imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config'
imagenet16_config = load_config(imagenet16_config_path, None, None)
TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1)
print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num))
imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None)
assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20]
train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True)
valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True)
test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True)
print ('ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size))
print ('ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size))
print ('ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size))
imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config"
imagenet16_config = load_config(imagenet16_config_path, None, None)
TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets(
"ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1
)
print(
"original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num
)
)
imagenet_splits = load_config(root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt", None, None)
assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [
0,
4,
5,
10,
11,
13,
14,
15,
17,
20,
]
train_imagenet_loader = torch.utils.data.DataLoader(
TRAIN_ImageNet16_120,
batch_size=imagenet16_config.batch_size,
shuffle=True,
num_workers=workers,
pin_memory=True,
)
valid_imagenet_loader = torch.utils.data.DataLoader(
VALID_ImageNet16_120,
batch_size=imagenet16_config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid),
num_workers=workers,
pin_memory=True,
)
test__imagenet_loader = torch.utils.data.DataLoader(
VALID_ImageNet16_120,
batch_size=imagenet16_config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest),
num_workers=workers,
pin_memory=True,
)
print(
"ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch".format(
len(train_imagenet_loader), imagenet16_config.batch_size
)
)
print(
"ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch".format(
len(valid_imagenet_loader), imagenet16_config.batch_size
)
)
print(
"ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch".format(
len(test__imagenet_loader), imagenet16_config.batch_size
)
)
# 'cifar10', 'cifar100', 'ImageNet16-120'
loaders = {'cifar10@trainval': trainval_cifar10_loader,
'cifar10@train' : train_cifar10_loader,
'cifar10@valid' : valid_cifar10_loader,
'cifar10@test' : test__cifar10_loader,
'cifar100@train' : train_cifar100_loader,
'cifar100@valid' : valid_cifar100_loader,
'cifar100@test' : test__cifar100_loader,
'ImageNet16-120@train': train_imagenet_loader,
'ImageNet16-120@valid': valid_imagenet_loader,
'ImageNet16-120@test' : test__imagenet_loader}
return loaders
# 'cifar10', 'cifar100', 'ImageNet16-120'
loaders = {
"cifar10@trainval": trainval_cifar10_loader,
"cifar10@train": train_cifar10_loader,
"cifar10@valid": valid_cifar10_loader,
"cifar10@test": test__cifar10_loader,
"cifar100@train": train_cifar100_loader,
"cifar100@valid": valid_cifar100_loader,
"cifar100@test": test__cifar100_loader,
"ImageNet16-120@train": train_imagenet_loader,
"ImageNet16-120@valid": valid_imagenet_loader,
"ImageNet16-120@test": test__imagenet_loader,
}
return loaders

View File

@ -8,197 +8,201 @@ from torch.optim import Optimizer
class _LRScheduler(object):
def __init__(self, optimizer, warmup_epochs, epochs):
if not isinstance(optimizer, Optimizer):
raise TypeError("{:} is not an Optimizer".format(type(optimizer).__name__))
self.optimizer = optimizer
for group in optimizer.param_groups:
group.setdefault("initial_lr", group["lr"])
self.base_lrs = list(map(lambda group: group["initial_lr"], optimizer.param_groups))
self.max_epochs = epochs
self.warmup_epochs = warmup_epochs
self.current_epoch = 0
self.current_iter = 0
def __init__(self, optimizer, warmup_epochs, epochs):
if not isinstance(optimizer, Optimizer):
raise TypeError('{:} is not an Optimizer'.format(type(optimizer).__name__))
self.optimizer = optimizer
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
self.max_epochs = epochs
self.warmup_epochs = warmup_epochs
self.current_epoch = 0
self.current_iter = 0
def extra_repr(self):
return ""
def extra_repr(self):
return ''
def __repr__(self):
return "{name}(warmup={warmup_epochs}, max-epoch={max_epochs}, current::epoch={current_epoch}, iter={current_iter:.2f}".format(
name=self.__class__.__name__, **self.__dict__
) + ", {:})".format(
self.extra_repr()
)
def __repr__(self):
return ('{name}(warmup={warmup_epochs}, max-epoch={max_epochs}, current::epoch={current_epoch}, iter={current_iter:.2f}'.format(name=self.__class__.__name__, **self.__dict__)
+ ', {:})'.format(self.extra_repr()))
def state_dict(self):
return {key: value for key, value in self.__dict__.items() if key != "optimizer"}
def state_dict(self):
return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}
def load_state_dict(self, state_dict):
self.__dict__.update(state_dict)
def load_state_dict(self, state_dict):
self.__dict__.update(state_dict)
def get_lr(self):
raise NotImplementedError
def get_lr(self):
raise NotImplementedError
def get_min_info(self):
lrs = self.get_lr()
return "#LR=[{:.6f}~{:.6f}] epoch={:03d}, iter={:4.2f}#".format(
min(lrs), max(lrs), self.current_epoch, self.current_iter
)
def get_min_info(self):
lrs = self.get_lr()
return '#LR=[{:.6f}~{:.6f}] epoch={:03d}, iter={:4.2f}#'.format(min(lrs), max(lrs), self.current_epoch, self.current_iter)
def get_min_lr(self):
return min( self.get_lr() )
def update(self, cur_epoch, cur_iter):
if cur_epoch is not None:
assert isinstance(cur_epoch, int) and cur_epoch>=0, 'invalid cur-epoch : {:}'.format(cur_epoch)
self.current_epoch = cur_epoch
if cur_iter is not None:
assert isinstance(cur_iter, float) and cur_iter>=0, 'invalid cur-iter : {:}'.format(cur_iter)
self.current_iter = cur_iter
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
def get_min_lr(self):
return min(self.get_lr())
def update(self, cur_epoch, cur_iter):
if cur_epoch is not None:
assert isinstance(cur_epoch, int) and cur_epoch >= 0, "invalid cur-epoch : {:}".format(cur_epoch)
self.current_epoch = cur_epoch
if cur_iter is not None:
assert isinstance(cur_iter, float) and cur_iter >= 0, "invalid cur-iter : {:}".format(cur_iter)
self.current_iter = cur_iter
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group["lr"] = lr
class CosineAnnealingLR(_LRScheduler):
def __init__(self, optimizer, warmup_epochs, epochs, T_max, eta_min):
self.T_max = T_max
self.eta_min = eta_min
super(CosineAnnealingLR, self).__init__(optimizer, warmup_epochs, epochs)
def __init__(self, optimizer, warmup_epochs, epochs, T_max, eta_min):
self.T_max = T_max
self.eta_min = eta_min
super(CosineAnnealingLR, self).__init__(optimizer, warmup_epochs, epochs)
def extra_repr(self):
return 'type={:}, T-max={:}, eta-min={:}'.format('cosine', self.T_max, self.eta_min)
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs and self.current_epoch < self.max_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
#if last_epoch < self.T_max:
#if last_epoch < self.max_epochs:
lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * last_epoch / self.T_max)) / 2
#else:
# lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.T_max-1.0) / self.T_max)) / 2
elif self.current_epoch >= self.max_epochs:
lr = self.eta_min
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append( lr )
return lrs
def extra_repr(self):
return "type={:}, T-max={:}, eta-min={:}".format("cosine", self.T_max, self.eta_min)
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs and self.current_epoch < self.max_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
# if last_epoch < self.T_max:
# if last_epoch < self.max_epochs:
lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * last_epoch / self.T_max)) / 2
# else:
# lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.T_max-1.0) / self.T_max)) / 2
elif self.current_epoch >= self.max_epochs:
lr = self.eta_min
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append(lr)
return lrs
class MultiStepLR(_LRScheduler):
def __init__(self, optimizer, warmup_epochs, epochs, milestones, gammas):
assert len(milestones) == len(gammas), "invalid {:} vs {:}".format(len(milestones), len(gammas))
self.milestones = milestones
self.gammas = gammas
super(MultiStepLR, self).__init__(optimizer, warmup_epochs, epochs)
def __init__(self, optimizer, warmup_epochs, epochs, milestones, gammas):
assert len(milestones) == len(gammas), 'invalid {:} vs {:}'.format(len(milestones), len(gammas))
self.milestones = milestones
self.gammas = gammas
super(MultiStepLR, self).__init__(optimizer, warmup_epochs, epochs)
def extra_repr(self):
return "type={:}, milestones={:}, gammas={:}, base-lrs={:}".format(
"multistep", self.milestones, self.gammas, self.base_lrs
)
def extra_repr(self):
return 'type={:}, milestones={:}, gammas={:}, base-lrs={:}'.format('multistep', self.milestones, self.gammas, self.base_lrs)
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
idx = bisect_right(self.milestones, last_epoch)
lr = base_lr
for x in self.gammas[:idx]: lr *= x
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append( lr )
return lrs
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
idx = bisect_right(self.milestones, last_epoch)
lr = base_lr
for x in self.gammas[:idx]:
lr *= x
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append(lr)
return lrs
class ExponentialLR(_LRScheduler):
def __init__(self, optimizer, warmup_epochs, epochs, gamma):
self.gamma = gamma
super(ExponentialLR, self).__init__(optimizer, warmup_epochs, epochs)
def __init__(self, optimizer, warmup_epochs, epochs, gamma):
self.gamma = gamma
super(ExponentialLR, self).__init__(optimizer, warmup_epochs, epochs)
def extra_repr(self):
return "type={:}, gamma={:}, base-lrs={:}".format("exponential", self.gamma, self.base_lrs)
def extra_repr(self):
return 'type={:}, gamma={:}, base-lrs={:}'.format('exponential', self.gamma, self.base_lrs)
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
assert last_epoch >= 0, 'invalid last_epoch : {:}'.format(last_epoch)
lr = base_lr * (self.gamma ** last_epoch)
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append( lr )
return lrs
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
assert last_epoch >= 0, "invalid last_epoch : {:}".format(last_epoch)
lr = base_lr * (self.gamma ** last_epoch)
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append(lr)
return lrs
class LinearLR(_LRScheduler):
def __init__(self, optimizer, warmup_epochs, epochs, max_LR, min_LR):
self.max_LR = max_LR
self.min_LR = min_LR
super(LinearLR, self).__init__(optimizer, warmup_epochs, epochs)
def __init__(self, optimizer, warmup_epochs, epochs, max_LR, min_LR):
self.max_LR = max_LR
self.min_LR = min_LR
super(LinearLR, self).__init__(optimizer, warmup_epochs, epochs)
def extra_repr(self):
return 'type={:}, max_LR={:}, min_LR={:}, base-lrs={:}'.format('LinearLR', self.max_LR, self.min_LR, self.base_lrs)
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
assert last_epoch >= 0, 'invalid last_epoch : {:}'.format(last_epoch)
ratio = (self.max_LR - self.min_LR) * last_epoch / self.max_epochs / self.max_LR
lr = base_lr * (1-ratio)
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append( lr )
return lrs
def extra_repr(self):
return "type={:}, max_LR={:}, min_LR={:}, base-lrs={:}".format(
"LinearLR", self.max_LR, self.min_LR, self.base_lrs
)
def get_lr(self):
lrs = []
for base_lr in self.base_lrs:
if self.current_epoch >= self.warmup_epochs:
last_epoch = self.current_epoch - self.warmup_epochs
assert last_epoch >= 0, "invalid last_epoch : {:}".format(last_epoch)
ratio = (self.max_LR - self.min_LR) * last_epoch / self.max_epochs / self.max_LR
lr = base_lr * (1 - ratio)
else:
lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr
lrs.append(lr)
return lrs
class CrossEntropyLabelSmooth(nn.Module):
def __init__(self, num_classes, epsilon):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.logsoftmax = nn.LogSoftmax(dim=1)
def __init__(self, num_classes, epsilon):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
log_probs = self.logsoftmax(inputs)
targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1)
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss
def forward(self, inputs, targets):
log_probs = self.logsoftmax(inputs)
targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1)
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss
def get_optim_scheduler(parameters, config):
assert hasattr(config, 'optim') and hasattr(config, 'scheduler') and hasattr(config, 'criterion'), 'config must have optim / scheduler / criterion keys instead of {:}'.format(config)
if config.optim == 'SGD':
optim = torch.optim.SGD(parameters, config.LR, momentum=config.momentum, weight_decay=config.decay, nesterov=config.nesterov)
elif config.optim == 'RMSprop':
optim = torch.optim.RMSprop(parameters, config.LR, momentum=config.momentum, weight_decay=config.decay)
else:
raise ValueError('invalid optim : {:}'.format(config.optim))
assert (
hasattr(config, "optim") and hasattr(config, "scheduler") and hasattr(config, "criterion")
), "config must have optim / scheduler / criterion keys instead of {:}".format(config)
if config.optim == "SGD":
optim = torch.optim.SGD(
parameters, config.LR, momentum=config.momentum, weight_decay=config.decay, nesterov=config.nesterov
)
elif config.optim == "RMSprop":
optim = torch.optim.RMSprop(parameters, config.LR, momentum=config.momentum, weight_decay=config.decay)
else:
raise ValueError("invalid optim : {:}".format(config.optim))
if config.scheduler == 'cos':
T_max = getattr(config, 'T_max', config.epochs)
scheduler = CosineAnnealingLR(optim, config.warmup, config.epochs, T_max, config.eta_min)
elif config.scheduler == 'multistep':
scheduler = MultiStepLR(optim, config.warmup, config.epochs, config.milestones, config.gammas)
elif config.scheduler == 'exponential':
scheduler = ExponentialLR(optim, config.warmup, config.epochs, config.gamma)
elif config.scheduler == 'linear':
scheduler = LinearLR(optim, config.warmup, config.epochs, config.LR, config.LR_min)
else:
raise ValueError('invalid scheduler : {:}'.format(config.scheduler))
if config.scheduler == "cos":
T_max = getattr(config, "T_max", config.epochs)
scheduler = CosineAnnealingLR(optim, config.warmup, config.epochs, T_max, config.eta_min)
elif config.scheduler == "multistep":
scheduler = MultiStepLR(optim, config.warmup, config.epochs, config.milestones, config.gammas)
elif config.scheduler == "exponential":
scheduler = ExponentialLR(optim, config.warmup, config.epochs, config.gamma)
elif config.scheduler == "linear":
scheduler = LinearLR(optim, config.warmup, config.epochs, config.LR, config.LR_min)
else:
raise ValueError("invalid scheduler : {:}".format(config.scheduler))
if config.criterion == 'Softmax':
criterion = torch.nn.CrossEntropyLoss()
elif config.criterion == 'SmoothSoftmax':
criterion = CrossEntropyLabelSmooth(config.class_num, config.label_smooth)
else:
raise ValueError('invalid criterion : {:}'.format(config.criterion))
return optim, scheduler, criterion
if config.criterion == "Softmax":
criterion = torch.nn.CrossEntropyLoss()
elif config.criterion == "SmoothSoftmax":
criterion = CrossEntropyLabelSmooth(config.class_num, config.label_smooth)
else:
raise ValueError("invalid criterion : {:}".format(config.criterion))
return optim, scheduler, criterion

View File

@ -7,11 +7,12 @@ from qlib.utils import init_instance_by_config
from qlib.workflow import R
from qlib.utils import flatten_dict
from qlib.log import set_log_basic_config
from qlib.log import get_module_logger
def update_gpu(config, gpu):
config = config.copy()
if "task" in config and "GPU" in config["task"]["model"]:
if "task" in config and "moodel" in config["task"] and "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
elif "model" in config and "GPU" in config["model"]:
config["model"]["GPU"] = gpu
@ -29,11 +30,6 @@ def update_market(config, market):
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
# model initiaiton
print("")
print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
print("dataset={:}".format(dataset))
model = init_instance_by_config(task_config["model"])
# start exp
@ -41,6 +37,10 @@ def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name)
set_log_basic_config(log_file)
logger = get_module_logger("q.run_exp")
logger.info("task_config={:}".format(task_config))
logger.info("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
logger.info("dataset={:}".format(dataset))
# train model
R.log_params(**flatten_dict(task_config))

View File

@ -3,124 +3,170 @@
##################################################
import os, sys, time, torch
from log_utils import AverageMeter, time_string
from utils import obtain_accuracy
from models import change_key
from utils import obtain_accuracy
from models import change_key
def get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant):
expected_flop = torch.mean( expected_flop )
expected_flop = torch.mean(expected_flop)
if flop_cur < flop_need - flop_tolerant: # Too Small FLOP
loss = - torch.log( expected_flop )
#elif flop_cur > flop_need + flop_tolerant: # Too Large FLOP
elif flop_cur > flop_need: # Too Large FLOP
loss = torch.log( expected_flop )
else: # Required FLOP
loss = None
if loss is None: return 0, 0
else : return loss, loss.item()
if flop_cur < flop_need - flop_tolerant: # Too Small FLOP
loss = -torch.log(expected_flop)
# elif flop_cur > flop_need + flop_tolerant: # Too Large FLOP
elif flop_cur > flop_need: # Too Large FLOP
loss = torch.log(expected_flop)
else: # Required FLOP
loss = None
if loss is None:
return 0, 0
else:
return loss, loss.item()
def search_train(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, extra_info, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
epoch_str, flop_need, flop_weight, flop_tolerant = extra_info['epoch-str'], extra_info['FLOP-exp'], extra_info['FLOP-weight'], extra_info['FLOP-tolerant']
def search_train(
search_loader,
network,
criterion,
scheduler,
base_optimizer,
arch_optimizer,
optim_config,
extra_info,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
epoch_str, flop_need, flop_weight, flop_tolerant = (
extra_info["epoch-str"],
extra_info["FLOP-exp"],
extra_info["FLOP-weight"],
extra_info["FLOP-tolerant"],
)
network.train()
logger.log('[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}'.format(epoch_str, flop_need, flop_weight))
end = time.time()
network.apply( change_key('search_mode', 'search') )
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader):
scheduler.update(None, 1.0 * step / len(search_loader))
# calculate prediction and loss
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
base_optimizer.zero_grad()
logits, expected_flop = network(base_inputs)
#network.apply( change_key('search_mode', 'basic') )
#features, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
base_optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
top1.update (prec1.item(), base_inputs.size(0))
top5.update (prec5.item(), base_inputs.size(0))
# update the architecture
arch_optimizer.zero_grad()
logits, expected_flop = network(arch_inputs)
flop_cur = network.module.get_flop('genotype', None, None)
flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant)
acls_loss = criterion(logits, arch_targets)
arch_loss = acls_loss + flop_loss * flop_weight
arch_loss.backward()
arch_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
arch_cls_losses.update (acls_loss.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
network.train()
logger.log("[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}".format(epoch_str, flop_need, flop_weight))
end = time.time()
if step % print_freq == 0 or (step+1) == len(search_loader):
Sstr = '**TRAIN** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(search_loader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Lstr = 'Base-Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=base_losses, top1=top1, top5=top5)
Vstr = 'Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})'.format(aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses)
logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr)
#Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
#logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
#print(network.module.get_arch_info())
#print(network.module.width_attentions[0])
#print(network.module.width_attentions[1])
network.apply(change_key("search_mode", "search"))
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader):
scheduler.update(None, 1.0 * step / len(search_loader))
# calculate prediction and loss
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
logger.log(' **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, baseloss=base_losses.avg, archloss=arch_losses.avg))
return base_losses.avg, arch_losses.avg, top1.avg, top5.avg
# update the weights
base_optimizer.zero_grad()
logits, expected_flop = network(base_inputs)
# network.apply( change_key('search_mode', 'basic') )
# features, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
base_optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
top1.update(prec1.item(), base_inputs.size(0))
top5.update(prec5.item(), base_inputs.size(0))
# update the architecture
arch_optimizer.zero_grad()
logits, expected_flop = network(arch_inputs)
flop_cur = network.module.get_flop("genotype", None, None)
flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant)
acls_loss = criterion(logits, arch_targets)
arch_loss = acls_loss + flop_loss * flop_weight
arch_loss.backward()
arch_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
arch_cls_losses.update(acls_loss.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or (step + 1) == len(search_loader):
Sstr = "**TRAIN** " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(search_loader))
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Lstr = "Base-Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=base_losses, top1=top1, top5=top5
)
Vstr = "Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})".format(
aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses
)
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Vstr)
# Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
# logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
# print(network.module.get_arch_info())
# print(network.module.width_attentions[0])
# print(network.module.width_attentions[1])
logger.log(
" **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}".format(
top1=top1,
top5=top5,
error1=100 - top1.avg,
error5=100 - top5.avg,
baseloss=base_losses.avg,
archloss=arch_losses.avg,
)
)
return base_losses.avg, arch_losses.avg, top1.avg, top5.avg
def search_valid(xloader, network, criterion, extra_info, print_freq, logger):
data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
data_time, batch_time, losses, top1, top5 = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
)
network.eval()
network.apply( change_key('search_mode', 'search') )
end = time.time()
#logger.log('Starting evaluating {:}'.format(epoch_info))
with torch.no_grad():
for i, (inputs, targets) in enumerate(xloader):
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
network.eval()
network.apply(change_key("search_mode", "search"))
end = time.time()
# logger.log('Starting evaluating {:}'.format(epoch_info))
with torch.no_grad():
for i, (inputs, targets) in enumerate(xloader):
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
logits, expected_flop = network(inputs)
loss = criterion(logits, targets)
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update (prec1.item(), inputs.size(0))
top5.update (prec5.item(), inputs.size(0))
logits, expected_flop = network(inputs)
loss = criterion(logits, targets)
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0 or (i+1) == len(xloader):
Sstr = '**VALID** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(extra_info, i, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5)
Istr = 'Size={:}'.format(list(inputs.size()))
logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr)
if i % print_freq == 0 or (i + 1) == len(xloader):
Sstr = "**VALID** " + time_string() + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=losses, top1=top1, top5=top5
)
Istr = "Size={:}".format(list(inputs.size()))
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)
logger.log(' **VALID** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg))
return losses.avg, top1.avg, top5.avg
logger.log(
" **VALID** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format(
top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg
)
)
return losses.avg, top1.avg, top5.avg

View File

@ -3,85 +3,118 @@
##################################################
import os, sys, time, torch
from log_utils import AverageMeter, time_string
from utils import obtain_accuracy
from models import change_key
from utils import obtain_accuracy
from models import change_key
def get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant):
expected_flop = torch.mean( expected_flop )
expected_flop = torch.mean(expected_flop)
if flop_cur < flop_need - flop_tolerant: # Too Small FLOP
loss = - torch.log( expected_flop )
#elif flop_cur > flop_need + flop_tolerant: # Too Large FLOP
elif flop_cur > flop_need: # Too Large FLOP
loss = torch.log( expected_flop )
else: # Required FLOP
loss = None
if loss is None: return 0, 0
else : return loss, loss.item()
if flop_cur < flop_need - flop_tolerant: # Too Small FLOP
loss = -torch.log(expected_flop)
# elif flop_cur > flop_need + flop_tolerant: # Too Large FLOP
elif flop_cur > flop_need: # Too Large FLOP
loss = torch.log(expected_flop)
else: # Required FLOP
loss = None
if loss is None:
return 0, 0
else:
return loss, loss.item()
def search_train_v2(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, extra_info, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
epoch_str, flop_need, flop_weight, flop_tolerant = extra_info['epoch-str'], extra_info['FLOP-exp'], extra_info['FLOP-weight'], extra_info['FLOP-tolerant']
def search_train_v2(
search_loader,
network,
criterion,
scheduler,
base_optimizer,
arch_optimizer,
optim_config,
extra_info,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
epoch_str, flop_need, flop_weight, flop_tolerant = (
extra_info["epoch-str"],
extra_info["FLOP-exp"],
extra_info["FLOP-weight"],
extra_info["FLOP-tolerant"],
)
network.train()
logger.log('[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}'.format(epoch_str, flop_need, flop_weight))
end = time.time()
network.apply( change_key('search_mode', 'search') )
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader):
scheduler.update(None, 1.0 * step / len(search_loader))
# calculate prediction and loss
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
base_optimizer.zero_grad()
logits, expected_flop = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
base_optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
top1.update (prec1.item(), base_inputs.size(0))
top5.update (prec5.item(), base_inputs.size(0))
# update the architecture
arch_optimizer.zero_grad()
logits, expected_flop = network(arch_inputs)
flop_cur = network.module.get_flop('genotype', None, None)
flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant)
acls_loss = criterion(logits, arch_targets)
arch_loss = acls_loss + flop_loss * flop_weight
arch_loss.backward()
arch_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
arch_cls_losses.update (acls_loss.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
network.train()
logger.log("[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}".format(epoch_str, flop_need, flop_weight))
end = time.time()
if step % print_freq == 0 or (step+1) == len(search_loader):
Sstr = '**TRAIN** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(search_loader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Lstr = 'Base-Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=base_losses, top1=top1, top5=top5)
Vstr = 'Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})'.format(aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses)
logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr)
#num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0
#logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6))
#Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
#logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
#print(network.module.get_arch_info())
#print(network.module.width_attentions[0])
#print(network.module.width_attentions[1])
network.apply(change_key("search_mode", "search"))
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader):
scheduler.update(None, 1.0 * step / len(search_loader))
# calculate prediction and loss
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
logger.log(' **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, baseloss=base_losses.avg, archloss=arch_losses.avg))
return base_losses.avg, arch_losses.avg, top1.avg, top5.avg
# update the weights
base_optimizer.zero_grad()
logits, expected_flop = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
base_optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
top1.update(prec1.item(), base_inputs.size(0))
top5.update(prec5.item(), base_inputs.size(0))
# update the architecture
arch_optimizer.zero_grad()
logits, expected_flop = network(arch_inputs)
flop_cur = network.module.get_flop("genotype", None, None)
flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant)
acls_loss = criterion(logits, arch_targets)
arch_loss = acls_loss + flop_loss * flop_weight
arch_loss.backward()
arch_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
arch_cls_losses.update(acls_loss.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or (step + 1) == len(search_loader):
Sstr = "**TRAIN** " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(search_loader))
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Lstr = "Base-Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=base_losses, top1=top1, top5=top5
)
Vstr = "Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})".format(
aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses
)
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Vstr)
# num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0
# logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6))
# Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
# logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
# print(network.module.get_arch_info())
# print(network.module.width_attentions[0])
# print(network.module.width_attentions[1])
logger.log(
" **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}".format(
top1=top1,
top5=top5,
error1=100 - top1.avg,
error5=100 - top5.avg,
baseloss=base_losses.avg,
archloss=arch_losses.avg,
)
)
return base_losses.avg, arch_losses.avg, top1.avg, top5.avg

View File

@ -3,92 +3,143 @@
#####################################################
import os, sys, time, torch
import torch.nn.functional as F
# our modules
from log_utils import AverageMeter, time_string
from utils import obtain_accuracy
from utils import obtain_accuracy
def simple_KD_train(xloader, teacher, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger):
loss, acc1, acc5 = procedure(xloader, teacher, network, criterion, scheduler, optimizer, 'train', optim_config, extra_info, print_freq, logger)
return loss, acc1, acc5
def simple_KD_train(
xloader, teacher, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger
):
loss, acc1, acc5 = procedure(
xloader,
teacher,
network,
criterion,
scheduler,
optimizer,
"train",
optim_config,
extra_info,
print_freq,
logger,
)
return loss, acc1, acc5
def simple_KD_valid(xloader, teacher, network, criterion, optim_config, extra_info, print_freq, logger):
with torch.no_grad():
loss, acc1, acc5 = procedure(xloader, teacher, network, criterion, None, None, 'valid', optim_config, extra_info, print_freq, logger)
return loss, acc1, acc5
with torch.no_grad():
loss, acc1, acc5 = procedure(
xloader, teacher, network, criterion, None, None, "valid", optim_config, extra_info, print_freq, logger
)
return loss, acc1, acc5
def loss_KD_fn(criterion, student_logits, teacher_logits, studentFeatures, teacherFeatures, targets, alpha, temperature):
basic_loss = criterion(student_logits, targets) * (1. - alpha)
log_student= F.log_softmax(student_logits / temperature, dim=1)
sof_teacher= F.softmax (teacher_logits / temperature, dim=1)
KD_loss = F.kl_div(log_student, sof_teacher, reduction='batchmean') * (alpha * temperature * temperature)
return basic_loss + KD_loss
def loss_KD_fn(
criterion, student_logits, teacher_logits, studentFeatures, teacherFeatures, targets, alpha, temperature
):
basic_loss = criterion(student_logits, targets) * (1.0 - alpha)
log_student = F.log_softmax(student_logits / temperature, dim=1)
sof_teacher = F.softmax(teacher_logits / temperature, dim=1)
KD_loss = F.kl_div(log_student, sof_teacher, reduction="batchmean") * (alpha * temperature * temperature)
return basic_loss + KD_loss
def procedure(xloader, teacher, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger):
data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
Ttop1, Ttop5 = AverageMeter(), AverageMeter()
if mode == 'train':
network.train()
elif mode == 'valid':
network.eval()
else: raise ValueError("The mode is not right : {:}".format(mode))
teacher.eval()
logger.log('[{:5s}] config :: auxiliary={:}, KD :: [alpha={:.2f}, temperature={:.2f}]'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, config.KD_alpha, config.KD_temperature))
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader))
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
if mode == 'train': optimizer.zero_grad()
student_f, logits = network(inputs)
if isinstance(logits, list):
assert len(logits) == 2, 'logits must has {:} items instead of {:}'.format(2, len(logits))
logits, logits_aux = logits
data_time, batch_time, losses, top1, top5 = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
)
Ttop1, Ttop5 = AverageMeter(), AverageMeter()
if mode == "train":
network.train()
elif mode == "valid":
network.eval()
else:
logits, logits_aux = logits, None
with torch.no_grad():
teacher_f, teacher_logits = teacher(inputs)
raise ValueError("The mode is not right : {:}".format(mode))
teacher.eval()
loss = loss_KD_fn(criterion, logits, teacher_logits, student_f, teacher_f, targets, config.KD_alpha, config.KD_temperature)
if config is not None and hasattr(config, 'auxiliary') and config.auxiliary > 0:
loss_aux = criterion(logits_aux, targets)
loss += config.auxiliary * loss_aux
if mode == 'train':
loss.backward()
optimizer.step()
# record
sprec1, sprec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update (sprec1.item(), inputs.size(0))
top5.update (sprec5.item(), inputs.size(0))
# teacher
tprec1, tprec5 = obtain_accuracy(teacher_logits.data, targets.data, topk=(1, 5))
Ttop1.update (tprec1.item(), inputs.size(0))
Ttop5.update (tprec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
logger.log(
"[{:5s}] config :: auxiliary={:}, KD :: [alpha={:.2f}, temperature={:.2f}]".format(
mode, config.auxiliary if hasattr(config, "auxiliary") else -1, config.KD_alpha, config.KD_temperature
)
)
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == "train":
scheduler.update(None, 1.0 * i / len(xloader))
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
if i % print_freq == 0 or (i+1) == len(xloader):
Sstr = ' {:5s} '.format(mode.upper()) + time_string() + ' [{:}][{:03d}/{:03d}]'.format(extra_info, i, len(xloader))
if scheduler is not None:
Sstr += ' {:}'.format(scheduler.get_min_info())
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5)
Lstr+= ' Teacher : acc@1={:.2f}, acc@5={:.2f}'.format(Ttop1.avg, Ttop5.avg)
Istr = 'Size={:}'.format(list(inputs.size()))
logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr)
if mode == "train":
optimizer.zero_grad()
logger.log(' **{:5s}** accuracy drop :: @1={:.2f}, @5={:.2f}'.format(mode.upper(), Ttop1.avg - top1.avg, Ttop5.avg - top5.avg))
logger.log(' **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(mode=mode.upper(), top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg))
return losses.avg, top1.avg, top5.avg
student_f, logits = network(inputs)
if isinstance(logits, list):
assert len(logits) == 2, "logits must has {:} items instead of {:}".format(2, len(logits))
logits, logits_aux = logits
else:
logits, logits_aux = logits, None
with torch.no_grad():
teacher_f, teacher_logits = teacher(inputs)
loss = loss_KD_fn(
criterion, logits, teacher_logits, student_f, teacher_f, targets, config.KD_alpha, config.KD_temperature
)
if config is not None and hasattr(config, "auxiliary") and config.auxiliary > 0:
loss_aux = criterion(logits_aux, targets)
loss += config.auxiliary * loss_aux
if mode == "train":
loss.backward()
optimizer.step()
# record
sprec1, sprec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(sprec1.item(), inputs.size(0))
top5.update(sprec5.item(), inputs.size(0))
# teacher
tprec1, tprec5 = obtain_accuracy(teacher_logits.data, targets.data, topk=(1, 5))
Ttop1.update(tprec1.item(), inputs.size(0))
Ttop5.update(tprec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0 or (i + 1) == len(xloader):
Sstr = (
" {:5s} ".format(mode.upper())
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))
)
if scheduler is not None:
Sstr += " {:}".format(scheduler.get_min_info())
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=losses, top1=top1, top5=top5
)
Lstr += " Teacher : acc@1={:.2f}, acc@5={:.2f}".format(Ttop1.avg, Ttop5.avg)
Istr = "Size={:}".format(list(inputs.size()))
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)
logger.log(
" **{:5s}** accuracy drop :: @1={:.2f}, @5={:.2f}".format(
mode.upper(), Ttop1.avg - top1.avg, Ttop5.avg - top5.avg
)
)
logger.log(
" **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format(
mode=mode.upper(), top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg
)
)
return losses.avg, top1.avg, top5.avg

View File

@ -3,62 +3,71 @@
##################################################
import os, sys, torch, random, PIL, copy, numpy as np
from os import path as osp
from shutil import copyfile
from shutil import copyfile
def prepare_seed(rand_seed):
random.seed(rand_seed)
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
random.seed(rand_seed)
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
def prepare_logger(xargs):
args = copy.deepcopy( xargs )
from log_utils import Logger
logger = Logger(args.save_dir, args.rand_seed)
logger.log('Main Function with logger : {:}'.format(logger))
logger.log('Arguments : -------------------------------')
for name, value in args._get_kwargs():
logger.log('{:16} : {:}'.format(name, value))
logger.log("Python Version : {:}".format(sys.version.replace('\n', ' ')))
logger.log("Pillow Version : {:}".format(PIL.__version__))
logger.log("PyTorch Version : {:}".format(torch.__version__))
logger.log("cuDNN Version : {:}".format(torch.backends.cudnn.version()))
logger.log("CUDA available : {:}".format(torch.cuda.is_available()))
logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count()))
logger.log("CUDA_VISIBLE_DEVICES : {:}".format(os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ else 'None'))
return logger
args = copy.deepcopy(xargs)
from log_utils import Logger
logger = Logger(args.save_dir, args.rand_seed)
logger.log("Main Function with logger : {:}".format(logger))
logger.log("Arguments : -------------------------------")
for name, value in args._get_kwargs():
logger.log("{:16} : {:}".format(name, value))
logger.log("Python Version : {:}".format(sys.version.replace("\n", " ")))
logger.log("Pillow Version : {:}".format(PIL.__version__))
logger.log("PyTorch Version : {:}".format(torch.__version__))
logger.log("cuDNN Version : {:}".format(torch.backends.cudnn.version()))
logger.log("CUDA available : {:}".format(torch.cuda.is_available()))
logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count()))
logger.log(
"CUDA_VISIBLE_DEVICES : {:}".format(
os.environ["CUDA_VISIBLE_DEVICES"] if "CUDA_VISIBLE_DEVICES" in os.environ else "None"
)
)
return logger
def get_machine_info():
info = "Python Version : {:}".format(sys.version.replace('\n', ' '))
info+= "\nPillow Version : {:}".format(PIL.__version__)
info+= "\nPyTorch Version : {:}".format(torch.__version__)
info+= "\ncuDNN Version : {:}".format(torch.backends.cudnn.version())
info+= "\nCUDA available : {:}".format(torch.cuda.is_available())
info+= "\nCUDA GPU numbers : {:}".format(torch.cuda.device_count())
if 'CUDA_VISIBLE_DEVICES' in os.environ:
info+= "\nCUDA_VISIBLE_DEVICES={:}".format(os.environ['CUDA_VISIBLE_DEVICES'])
else:
info+= "\nDoes not set CUDA_VISIBLE_DEVICES"
return info
info = "Python Version : {:}".format(sys.version.replace("\n", " "))
info += "\nPillow Version : {:}".format(PIL.__version__)
info += "\nPyTorch Version : {:}".format(torch.__version__)
info += "\ncuDNN Version : {:}".format(torch.backends.cudnn.version())
info += "\nCUDA available : {:}".format(torch.cuda.is_available())
info += "\nCUDA GPU numbers : {:}".format(torch.cuda.device_count())
if "CUDA_VISIBLE_DEVICES" in os.environ:
info += "\nCUDA_VISIBLE_DEVICES={:}".format(os.environ["CUDA_VISIBLE_DEVICES"])
else:
info += "\nDoes not set CUDA_VISIBLE_DEVICES"
return info
def save_checkpoint(state, filename, logger):
if osp.isfile(filename):
if hasattr(logger, 'log'): logger.log('Find {:} exist, delete is at first before saving'.format(filename))
os.remove(filename)
torch.save(state, filename)
assert osp.isfile(filename), 'save filename : {:} failed, which is not found.'.format(filename)
if hasattr(logger, 'log'): logger.log('save checkpoint into {:}'.format(filename))
return filename
if osp.isfile(filename):
if hasattr(logger, "log"):
logger.log("Find {:} exist, delete is at first before saving".format(filename))
os.remove(filename)
torch.save(state, filename)
assert osp.isfile(filename), "save filename : {:} failed, which is not found.".format(filename)
if hasattr(logger, "log"):
logger.log("save checkpoint into {:}".format(filename))
return filename
def copy_checkpoint(src, dst, logger):
if osp.isfile(dst):
if hasattr(logger, 'log'): logger.log('Find {:} exist, delete is at first before saving'.format(dst))
os.remove(dst)
copyfile(src, dst)
if hasattr(logger, 'log'): logger.log('copy the file from {:} into {:}'.format(src, dst))
if osp.isfile(dst):
if hasattr(logger, "log"):
logger.log("Find {:} exist, delete is at first before saving".format(dst))
os.remove(dst)
copyfile(src, dst)
if hasattr(logger, "log"):
logger.log("copy the file from {:} into {:}".format(src, dst))

View File

@ -1,7 +1,7 @@
from .evaluation_utils import obtain_accuracy
from .gpu_manager import GPUManager
from .flop_benchmark import get_model_infos, count_parameters, count_parameters_in_MB
from .affine_utils import normalize_points, denormalize_points
from .affine_utils import identity2affine, solve2theta, affine2image
from .hash_utils import get_md5_file
from .str_utils import split_str2indexes
from .gpu_manager import GPUManager
from .flop_benchmark import get_model_infos, count_parameters, count_parameters_in_MB
from .affine_utils import normalize_points, denormalize_points
from .affine_utils import identity2affine, solve2theta, affine2image
from .hash_utils import get_md5_file
from .str_utils import split_str2indexes

View File

@ -1,125 +1,149 @@
# functions for affine transformation
import math, torch
import math
import torch
import numpy as np
import torch.nn.functional as F
def identity2affine(full=False):
if not full:
parameters = torch.zeros((2,3))
parameters[0, 0] = parameters[1, 1] = 1
else:
parameters = torch.zeros((3,3))
parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1
return parameters
if not full:
parameters = torch.zeros((2, 3))
parameters[0, 0] = parameters[1, 1] = 1
else:
parameters = torch.zeros((3, 3))
parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1
return parameters
def normalize_L(x, L):
return -1. + 2. * x / (L-1)
return -1.0 + 2.0 * x / (L - 1)
def denormalize_L(x, L):
return (x + 1.0) / 2.0 * (L-1)
return (x + 1.0) / 2.0 * (L - 1)
def crop2affine(crop_box, W, H):
assert len(crop_box) == 4, 'Invalid crop-box : {:}'.format(crop_box)
parameters = torch.zeros(3,3)
x1, y1 = normalize_L(crop_box[0], W), normalize_L(crop_box[1], H)
x2, y2 = normalize_L(crop_box[2], W), normalize_L(crop_box[3], H)
parameters[0,0] = (x2-x1)/2
parameters[0,2] = (x2+x1)/2
assert len(crop_box) == 4, "Invalid crop-box : {:}".format(crop_box)
parameters = torch.zeros(3, 3)
x1, y1 = normalize_L(crop_box[0], W), normalize_L(crop_box[1], H)
x2, y2 = normalize_L(crop_box[2], W), normalize_L(crop_box[3], H)
parameters[0, 0] = (x2 - x1) / 2
parameters[0, 2] = (x2 + x1) / 2
parameters[1, 1] = (y2 - y1) / 2
parameters[1, 2] = (y2 + y1) / 2
parameters[2, 2] = 1
return parameters
parameters[1,1] = (y2-y1)/2
parameters[1,2] = (y2+y1)/2
parameters[2,2] = 1
return parameters
def scale2affine(scalex, scaley):
parameters = torch.zeros(3,3)
parameters[0,0] = scalex
parameters[1,1] = scaley
parameters[2,2] = 1
return parameters
parameters = torch.zeros(3, 3)
parameters[0, 0] = scalex
parameters[1, 1] = scaley
parameters[2, 2] = 1
return parameters
def offset2affine(offx, offy):
parameters = torch.zeros(3,3)
parameters[0,0] = parameters[1,1] = parameters[2,2] = 1
parameters[0,2] = offx
parameters[1,2] = offy
return parameters
parameters = torch.zeros(3, 3)
parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1
parameters[0, 2] = offx
parameters[1, 2] = offy
return parameters
def horizontalmirror2affine():
parameters = torch.zeros(3,3)
parameters[0,0] = -1
parameters[1,1] = parameters[2,2] = 1
return parameters
parameters = torch.zeros(3, 3)
parameters[0, 0] = -1
parameters[1, 1] = parameters[2, 2] = 1
return parameters
# clockwise rotate image = counterclockwise rotate the rectangle
# degree is between [0, 360]
def rotate2affine(degree):
assert degree >= 0 and degree <= 360, 'Invalid degree : {:}'.format(degree)
degree = degree / 180 * math.pi
parameters = torch.zeros(3,3)
parameters[0,0] = math.cos(-degree)
parameters[0,1] = -math.sin(-degree)
parameters[1,0] = math.sin(-degree)
parameters[1,1] = math.cos(-degree)
parameters[2,2] = 1
return parameters
assert degree >= 0 and degree <= 360, "Invalid degree : {:}".format(degree)
degree = degree / 180 * math.pi
parameters = torch.zeros(3, 3)
parameters[0, 0] = math.cos(-degree)
parameters[0, 1] = -math.sin(-degree)
parameters[1, 0] = math.sin(-degree)
parameters[1, 1] = math.cos(-degree)
parameters[2, 2] = 1
return parameters
# shape is a tuple [H, W]
def normalize_points(shape, points):
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)
assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape)
(H, W), points = shape, points.clone()
points[0, :] = normalize_L(points[0,:], W)
points[1, :] = normalize_L(points[1,:], H)
return points
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format(
shape
)
assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), "points are wrong : {:}".format(points.shape)
(H, W), points = shape, points.clone()
points[0, :] = normalize_L(points[0, :], W)
points[1, :] = normalize_L(points[1, :], H)
return points
# shape is a tuple [H, W]
def normalize_points_batch(shape, points):
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)
assert isinstance(points, torch.Tensor) and (points.size(-1) == 2), 'points are wrong : {:}'.format(points.shape)
(H, W), points = shape, points.clone()
x = normalize_L(points[...,0], W)
y = normalize_L(points[...,1], H)
return torch.stack((x,y), dim=-1)
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format(
shape
)
assert isinstance(points, torch.Tensor) and (points.size(-1) == 2), "points are wrong : {:}".format(points.shape)
(H, W), points = shape, points.clone()
x = normalize_L(points[..., 0], W)
y = normalize_L(points[..., 1], H)
return torch.stack((x, y), dim=-1)
# shape is a tuple [H, W]
def denormalize_points(shape, points):
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)
assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape)
(H, W), points = shape, points.clone()
points[0, :] = denormalize_L(points[0,:], W)
points[1, :] = denormalize_L(points[1,:], H)
return points
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format(
shape
)
assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), "points are wrong : {:}".format(points.shape)
(H, W), points = shape, points.clone()
points[0, :] = denormalize_L(points[0, :], W)
points[1, :] = denormalize_L(points[1, :], H)
return points
# shape is a tuple [H, W]
def denormalize_points_batch(shape, points):
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)
assert isinstance(points, torch.Tensor) and (points.shape[-1] == 2), 'points are wrong : {:}'.format(points.shape)
(H, W), points = shape, points.clone()
x = denormalize_L(points[...,0], W)
y = denormalize_L(points[...,1], H)
return torch.stack((x,y), dim=-1)
assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format(
shape
)
assert isinstance(points, torch.Tensor) and (points.shape[-1] == 2), "points are wrong : {:}".format(points.shape)
(H, W), points = shape, points.clone()
x = denormalize_L(points[..., 0], W)
y = denormalize_L(points[..., 1], H)
return torch.stack((x, y), dim=-1)
# make target * theta = source
def solve2theta(source, target):
source, target = source.clone(), target.clone()
oks = source[2, :] == 1
assert torch.sum(oks).item() >= 3, 'valid points : {:} is short'.format(oks)
if target.size(0) == 2: target = torch.cat((target, oks.unsqueeze(0).float()), dim=0)
source, target = source[:, oks], target[:, oks]
source, target = source.transpose(1,0), target.transpose(1,0)
assert source.size(1) == target.size(1) == 3
#X, residual, rank, s = np.linalg.lstsq(target.numpy(), source.numpy())
#theta = torch.Tensor(X.T[:2, :])
X_, qr = torch.gels(source, target)
theta = X_[:3, :2].transpose(1, 0)
return theta
source, target = source.clone(), target.clone()
oks = source[2, :] == 1
assert torch.sum(oks).item() >= 3, "valid points : {:} is short".format(oks)
if target.size(0) == 2:
target = torch.cat((target, oks.unsqueeze(0).float()), dim=0)
source, target = source[:, oks], target[:, oks]
source, target = source.transpose(1, 0), target.transpose(1, 0)
assert source.size(1) == target.size(1) == 3
# X, residual, rank, s = np.linalg.lstsq(target.numpy(), source.numpy())
# theta = torch.Tensor(X.T[:2, :])
X_, qr = torch.gels(source, target)
theta = X_[:3, :2].transpose(1, 0)
return theta
# shape = [H,W]
def affine2image(image, theta, shape):
C, H, W = image.size()
theta = theta[:2, :].unsqueeze(0)
grid_size = torch.Size([1, C, shape[0], shape[1]])
grid = F.affine_grid(theta, grid_size)
affI = F.grid_sample(image.unsqueeze(0), grid, mode='bilinear', padding_mode='border')
return affI.squeeze(0)
C, H, W = image.size()
theta = theta[:2, :].unsqueeze(0)
grid_size = torch.Size([1, C, shape[0], shape[1]])
grid = F.affine_grid(theta, grid_size)
affI = F.grid_sample(image.unsqueeze(0), grid, mode="bilinear", padding_mode="border")
return affI.squeeze(0)

View File

@ -1,16 +1,17 @@
import torch
def obtain_accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res

View File

@ -4,191 +4,199 @@ import numpy as np
def count_parameters_in_MB(model):
return count_parameters(model, "mb")
return count_parameters(model, "mb")
def count_parameters(model_or_parameters, unit="mb"):
if isinstance(model_or_parameters, nn.Module):
counts = np.sum(np.prod(v.size()) for v in model_or_parameters.parameters())
else:
counts = np.sum(np.prod(v.size()) for v in model_or_parameters)
if unit.lower() == "mb":
counts /= 1e6
elif unit.lower() == "kb":
counts /= 1e3
elif unit.lower() == "gb":
counts /= 1e9
elif unit is not None:
raise ValueError("Unknow unit: {:}".format(unit))
return counts
if isinstance(model_or_parameters, nn.Module):
counts = np.sum(np.prod(v.size()) for v in model_or_parameters.parameters())
else:
counts = np.sum(np.prod(v.size()) for v in model_or_parameters)
if unit.lower() == "mb":
counts /= 1e6
elif unit.lower() == "kb":
counts /= 1e3
elif unit.lower() == "gb":
counts /= 1e9
elif unit is not None:
raise ValueError("Unknow unit: {:}".format(unit))
return counts
def get_model_infos(model, shape):
#model = copy.deepcopy( model )
# model = copy.deepcopy( model )
model = add_flops_counting_methods(model)
#model = model.cuda()
model.eval()
model = add_flops_counting_methods(model)
# model = model.cuda()
model.eval()
#cache_inputs = torch.zeros(*shape).cuda()
#cache_inputs = torch.zeros(*shape)
cache_inputs = torch.rand(*shape)
if next(model.parameters()).is_cuda: cache_inputs = cache_inputs.cuda()
#print_log('In the calculating function : cache input size : {:}'.format(cache_inputs.size()), log)
with torch.no_grad():
_____ = model(cache_inputs)
FLOPs = compute_average_flops_cost( model ) / 1e6
Param = count_parameters_in_MB(model)
# cache_inputs = torch.zeros(*shape).cuda()
# cache_inputs = torch.zeros(*shape)
cache_inputs = torch.rand(*shape)
if next(model.parameters()).is_cuda:
cache_inputs = cache_inputs.cuda()
# print_log('In the calculating function : cache input size : {:}'.format(cache_inputs.size()), log)
with torch.no_grad():
_____ = model(cache_inputs)
FLOPs = compute_average_flops_cost(model) / 1e6
Param = count_parameters_in_MB(model)
if hasattr(model, 'auxiliary_param'):
aux_params = count_parameters_in_MB(model.auxiliary_param())
print ('The auxiliary params of this model is : {:}'.format(aux_params))
print ('We remove the auxiliary params from the total params ({:}) when counting'.format(Param))
Param = Param - aux_params
#print_log('FLOPs : {:} MB'.format(FLOPs), log)
torch.cuda.empty_cache()
model.apply( remove_hook_function )
return FLOPs, Param
if hasattr(model, "auxiliary_param"):
aux_params = count_parameters_in_MB(model.auxiliary_param())
print("The auxiliary params of this model is : {:}".format(aux_params))
print("We remove the auxiliary params from the total params ({:}) when counting".format(Param))
Param = Param - aux_params
# print_log('FLOPs : {:} MB'.format(FLOPs), log)
torch.cuda.empty_cache()
model.apply(remove_hook_function)
return FLOPs, Param
# ---- Public functions
def add_flops_counting_methods( model ):
model.__batch_counter__ = 0
add_batch_counter_hook_function( model )
model.apply( add_flops_counter_variable_or_reset )
model.apply( add_flops_counter_hook_function )
return model
def add_flops_counting_methods(model):
model.__batch_counter__ = 0
add_batch_counter_hook_function(model)
model.apply(add_flops_counter_variable_or_reset)
model.apply(add_flops_counter_hook_function)
return model
def compute_average_flops_cost(model):
"""
A method that will be available after add_flops_counting_methods() is called on a desired net object.
Returns current mean flops consumption per image.
"""
batches_count = model.__batch_counter__
flops_sum = 0
#or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \
for module in model.modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear) \
or isinstance(module, torch.nn.Conv1d) \
or hasattr(module, 'calculate_flop_self'):
flops_sum += module.__flops__
return flops_sum / batches_count
"""
A method that will be available after add_flops_counting_methods() is called on a desired net object.
Returns current mean flops consumption per image.
"""
batches_count = model.__batch_counter__
flops_sum = 0
# or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \
for module in model.modules():
if (
isinstance(module, torch.nn.Conv2d)
or isinstance(module, torch.nn.Linear)
or isinstance(module, torch.nn.Conv1d)
or hasattr(module, "calculate_flop_self")
):
flops_sum += module.__flops__
return flops_sum / batches_count
# ---- Internal functions
def pool_flops_counter_hook(pool_module, inputs, output):
batch_size = inputs[0].size(0)
kernel_size = pool_module.kernel_size
out_C, output_height, output_width = output.shape[1:]
assert out_C == inputs[0].size(1), '{:} vs. {:}'.format(out_C, inputs[0].size())
batch_size = inputs[0].size(0)
kernel_size = pool_module.kernel_size
out_C, output_height, output_width = output.shape[1:]
assert out_C == inputs[0].size(1), "{:} vs. {:}".format(out_C, inputs[0].size())
overall_flops = batch_size * out_C * output_height * output_width * kernel_size * kernel_size
pool_module.__flops__ += overall_flops
overall_flops = batch_size * out_C * output_height * output_width * kernel_size * kernel_size
pool_module.__flops__ += overall_flops
def self_calculate_flops_counter_hook(self_module, inputs, output):
overall_flops = self_module.calculate_flop_self(inputs[0].shape, output.shape)
self_module.__flops__ += overall_flops
overall_flops = self_module.calculate_flop_self(inputs[0].shape, output.shape)
self_module.__flops__ += overall_flops
def fc_flops_counter_hook(fc_module, inputs, output):
batch_size = inputs[0].size(0)
xin, xout = fc_module.in_features, fc_module.out_features
assert xin == inputs[0].size(1) and xout == output.size(1), 'IO=({:}, {:})'.format(xin, xout)
overall_flops = batch_size * xin * xout
if fc_module.bias is not None:
overall_flops += batch_size * xout
fc_module.__flops__ += overall_flops
batch_size = inputs[0].size(0)
xin, xout = fc_module.in_features, fc_module.out_features
assert xin == inputs[0].size(1) and xout == output.size(1), "IO=({:}, {:})".format(xin, xout)
overall_flops = batch_size * xin * xout
if fc_module.bias is not None:
overall_flops += batch_size * xout
fc_module.__flops__ += overall_flops
def conv1d_flops_counter_hook(conv_module, inputs, outputs):
batch_size = inputs[0].size(0)
outL = outputs.shape[-1]
[kernel] = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
conv_per_position_flops = kernel * in_channels * out_channels / groups
active_elements_count = batch_size * outL
overall_flops = conv_per_position_flops * active_elements_count
batch_size = inputs[0].size(0)
outL = outputs.shape[-1]
[kernel] = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
conv_per_position_flops = kernel * in_channels * out_channels / groups
if conv_module.bias is not None:
overall_flops += out_channels * active_elements_count
conv_module.__flops__ += overall_flops
active_elements_count = batch_size * outL
overall_flops = conv_per_position_flops * active_elements_count
if conv_module.bias is not None:
overall_flops += out_channels * active_elements_count
conv_module.__flops__ += overall_flops
def conv2d_flops_counter_hook(conv_module, inputs, output):
batch_size = inputs[0].size(0)
output_height, output_width = output.shape[2:]
kernel_height, kernel_width = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
conv_per_position_flops = kernel_height * kernel_width * in_channels * out_channels / groups
active_elements_count = batch_size * output_height * output_width
overall_flops = conv_per_position_flops * active_elements_count
if conv_module.bias is not None:
overall_flops += out_channels * active_elements_count
conv_module.__flops__ += overall_flops
batch_size = inputs[0].size(0)
output_height, output_width = output.shape[2:]
kernel_height, kernel_width = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
conv_per_position_flops = kernel_height * kernel_width * in_channels * out_channels / groups
active_elements_count = batch_size * output_height * output_width
overall_flops = conv_per_position_flops * active_elements_count
if conv_module.bias is not None:
overall_flops += out_channels * active_elements_count
conv_module.__flops__ += overall_flops
def batch_counter_hook(module, inputs, output):
# Can have multiple inputs, getting the first one
inputs = inputs[0]
batch_size = inputs.shape[0]
module.__batch_counter__ += batch_size
# Can have multiple inputs, getting the first one
inputs = inputs[0]
batch_size = inputs.shape[0]
module.__batch_counter__ += batch_size
def add_batch_counter_hook_function(module):
if not hasattr(module, '__batch_counter_handle__'):
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
if not hasattr(module, "__batch_counter_handle__"):
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
def add_flops_counter_variable_or_reset(module):
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear) \
or isinstance(module, torch.nn.Conv1d) \
or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \
or hasattr(module, 'calculate_flop_self'):
module.__flops__ = 0
if (
isinstance(module, torch.nn.Conv2d)
or isinstance(module, torch.nn.Linear)
or isinstance(module, torch.nn.Conv1d)
or isinstance(module, torch.nn.AvgPool2d)
or isinstance(module, torch.nn.MaxPool2d)
or hasattr(module, "calculate_flop_self")
):
module.__flops__ = 0
def add_flops_counter_hook_function(module):
if isinstance(module, torch.nn.Conv2d):
if not hasattr(module, '__flops_handle__'):
handle = module.register_forward_hook(conv2d_flops_counter_hook)
module.__flops_handle__ = handle
elif isinstance(module, torch.nn.Conv1d):
if not hasattr(module, '__flops_handle__'):
handle = module.register_forward_hook(conv1d_flops_counter_hook)
module.__flops_handle__ = handle
elif isinstance(module, torch.nn.Linear):
if not hasattr(module, '__flops_handle__'):
handle = module.register_forward_hook(fc_flops_counter_hook)
module.__flops_handle__ = handle
elif isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d):
if not hasattr(module, '__flops_handle__'):
handle = module.register_forward_hook(pool_flops_counter_hook)
module.__flops_handle__ = handle
elif hasattr(module, 'calculate_flop_self'): # self-defined module
if not hasattr(module, '__flops_handle__'):
handle = module.register_forward_hook(self_calculate_flops_counter_hook)
module.__flops_handle__ = handle
if isinstance(module, torch.nn.Conv2d):
if not hasattr(module, "__flops_handle__"):
handle = module.register_forward_hook(conv2d_flops_counter_hook)
module.__flops_handle__ = handle
elif isinstance(module, torch.nn.Conv1d):
if not hasattr(module, "__flops_handle__"):
handle = module.register_forward_hook(conv1d_flops_counter_hook)
module.__flops_handle__ = handle
elif isinstance(module, torch.nn.Linear):
if not hasattr(module, "__flops_handle__"):
handle = module.register_forward_hook(fc_flops_counter_hook)
module.__flops_handle__ = handle
elif isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d):
if not hasattr(module, "__flops_handle__"):
handle = module.register_forward_hook(pool_flops_counter_hook)
module.__flops_handle__ = handle
elif hasattr(module, "calculate_flop_self"): # self-defined module
if not hasattr(module, "__flops_handle__"):
handle = module.register_forward_hook(self_calculate_flops_counter_hook)
module.__flops_handle__ = handle
def remove_hook_function(module):
hookers = ['__batch_counter_handle__', '__flops_handle__']
for hooker in hookers:
if hasattr(module, hooker):
handle = getattr(module, hooker)
handle.remove()
keys = ['__flops__', '__batch_counter__', '__flops__'] + hookers
for ckey in keys:
if hasattr(module, ckey): delattr(module, ckey)
hookers = ["__batch_counter_handle__", "__flops_handle__"]
for hooker in hookers:
if hasattr(module, hooker):
handle = getattr(module, hooker)
handle.remove()
keys = ["__flops__", "__batch_counter__", "__flops__"] + hookers
for ckey in keys:
if hasattr(module, ckey):
delattr(module, ckey)

View File

@ -1,65 +1,69 @@
import os
class GPUManager():
queries = ('index', 'gpu_name', 'memory.free', 'memory.used', 'memory.total', 'power.draw', 'power.limit')
def __init__(self):
all_gpus = self.query_gpu(False)
class GPUManager:
queries = ("index", "gpu_name", "memory.free", "memory.used", "memory.total", "power.draw", "power.limit")
def get_info(self, ctype):
cmd = 'nvidia-smi --query-gpu={} --format=csv,noheader'.format(ctype)
lines = os.popen(cmd).readlines()
lines = [line.strip('\n') for line in lines]
return lines
def __init__(self):
all_gpus = self.query_gpu(False)
def query_gpu(self, show=True):
num_gpus = len( self.get_info('index') )
all_gpus = [ {} for i in range(num_gpus) ]
for query in self.queries:
infos = self.get_info(query)
for idx, info in enumerate(infos):
all_gpus[idx][query] = info
def get_info(self, ctype):
cmd = "nvidia-smi --query-gpu={} --format=csv,noheader".format(ctype)
lines = os.popen(cmd).readlines()
lines = [line.strip("\n") for line in lines]
return lines
if 'CUDA_VISIBLE_DEVICES' in os.environ:
CUDA_VISIBLE_DEVICES = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
selected_gpus = []
for idx, CUDA_VISIBLE_DEVICE in enumerate(CUDA_VISIBLE_DEVICES):
find = False
for gpu in all_gpus:
if gpu['index'] == CUDA_VISIBLE_DEVICE:
assert not find, 'Duplicate cuda device index : {}'.format(CUDA_VISIBLE_DEVICE)
find = True
selected_gpus.append( gpu.copy() )
selected_gpus[-1]['index'] = '{}'.format(idx)
assert find, 'Does not find the device : {}'.format(CUDA_VISIBLE_DEVICE)
all_gpus = selected_gpus
if show:
allstrings = ''
for gpu in all_gpus:
string = '| '
def query_gpu(self, show=True):
num_gpus = len(self.get_info("index"))
all_gpus = [{} for i in range(num_gpus)]
for query in self.queries:
if query.find('memory') == 0: xinfo = '{:>9}'.format(gpu[query])
else: xinfo = gpu[query]
string = string + query + ' : ' + xinfo + ' | '
allstrings = allstrings + string + '\n'
return allstrings
else:
return all_gpus
infos = self.get_info(query)
for idx, info in enumerate(infos):
all_gpus[idx][query] = info
if "CUDA_VISIBLE_DEVICES" in os.environ:
CUDA_VISIBLE_DEVICES = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
selected_gpus = []
for idx, CUDA_VISIBLE_DEVICE in enumerate(CUDA_VISIBLE_DEVICES):
find = False
for gpu in all_gpus:
if gpu["index"] == CUDA_VISIBLE_DEVICE:
assert not find, "Duplicate cuda device index : {}".format(CUDA_VISIBLE_DEVICE)
find = True
selected_gpus.append(gpu.copy())
selected_gpus[-1]["index"] = "{}".format(idx)
assert find, "Does not find the device : {}".format(CUDA_VISIBLE_DEVICE)
all_gpus = selected_gpus
if show:
allstrings = ""
for gpu in all_gpus:
string = "| "
for query in self.queries:
if query.find("memory") == 0:
xinfo = "{:>9}".format(gpu[query])
else:
xinfo = gpu[query]
string = string + query + " : " + xinfo + " | "
allstrings = allstrings + string + "\n"
return allstrings
else:
return all_gpus
def select_by_memory(self, numbers=1):
all_gpus = self.query_gpu(False)
assert numbers <= len(all_gpus), "Require {} gpus more than you have".format(numbers)
alls = []
for idx, gpu in enumerate(all_gpus):
free_memory = gpu["memory.free"]
free_memory = free_memory.split(" ")[0]
free_memory = int(free_memory)
index = gpu["index"]
alls.append((free_memory, index))
alls.sort(reverse=True)
alls = [int(alls[i][1]) for i in range(numbers)]
return sorted(alls)
def select_by_memory(self, numbers=1):
all_gpus = self.query_gpu(False)
assert numbers <= len(all_gpus), 'Require {} gpus more than you have'.format(numbers)
alls = []
for idx, gpu in enumerate(all_gpus):
free_memory = gpu['memory.free']
free_memory = free_memory.split(' ')[0]
free_memory = int(free_memory)
index = gpu['index']
alls.append((free_memory, index))
alls.sort(reverse = True)
alls = [ int(alls[i][1]) for i in range(numbers) ]
return sorted(alls)
"""
if __name__ == '__main__':

View File

@ -1,16 +1,17 @@
import os, hashlib
import os
import hashlib
def get_md5_file(file_path, post_truncated=5):
md5_hash = hashlib.md5()
if os.path.exists(file_path):
xfile = open(file_path, "rb")
content = xfile.read()
md5_hash.update(content)
digest = md5_hash.hexdigest()
else:
raise ValueError('[get_md5_file] {:} does not exist'.format(file_path))
if post_truncated is None:
return digest
else:
return digest[-post_truncated:]
md5_hash = hashlib.md5()
if os.path.exists(file_path):
xfile = open(file_path, "rb")
content = xfile.read()
md5_hash.update(content)
digest = md5_hash.hexdigest()
else:
raise ValueError("[get_md5_file] {:} does not exist".format(file_path))
if post_truncated is None:
return digest
else:
return digest[-post_truncated:]

View File

@ -10,48 +10,58 @@ from log_utils import time_string
def evaluate_one_shot(model, xloader, api, cal_mode, seed=111):
print ('This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function.')
weights = deepcopy(model.state_dict())
model.train(cal_mode)
with torch.no_grad():
logits = nn.functional.log_softmax(model.arch_parameters, dim=-1)
archs = CellStructure.gen_all(model.op_names, model.max_nodes, False)
probs, accuracies, gt_accs_10_valid, gt_accs_10_test = [], [], [], []
loader_iter = iter(xloader)
random.seed(seed)
random.shuffle(archs)
for idx, arch in enumerate(archs):
arch_index = api.query_index_by_arch( arch )
metrics = api.get_more_info(arch_index, 'cifar10-valid', None, False, False)
gt_accs_10_valid.append( metrics['valid-accuracy'] )
metrics = api.get_more_info(arch_index, 'cifar10', None, False, False)
gt_accs_10_test.append( metrics['test-accuracy'] )
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = '{:}<-{:}'.format(i+1, xin)
op_index = model.op_names.index(op)
select_logits.append( logits[model.edge2index[node_str], op_index] )
cur_prob = sum(select_logits).item()
probs.append( cur_prob )
cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0,1]
cor_prob_test = np.corrcoef(probs, gt_accs_10_test )[0,1]
print ('{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test'.format(time_string(), cor_prob_valid, cor_prob_test))
for idx, arch in enumerate(archs):
model.set_cal_mode('dynamic', arch)
try:
inputs, targets = next(loader_iter)
except:
print(
"This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function."
)
weights = deepcopy(model.state_dict())
model.train(cal_mode)
with torch.no_grad():
logits = nn.functional.log_softmax(model.arch_parameters, dim=-1)
archs = CellStructure.gen_all(model.op_names, model.max_nodes, False)
probs, accuracies, gt_accs_10_valid, gt_accs_10_test = [], [], [], []
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, logits = model(inputs.cuda())
_, preds = torch.max(logits, dim=-1)
correct = (preds == targets.cuda() ).float()
accuracies.append( correct.mean().item() )
if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)):
cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[:idx+1])[0,1]
cor_accs_test = np.corrcoef(accuracies, gt_accs_10_test [:idx+1])[0,1]
print ('{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.'.format(time_string(), idx, len(archs), 'Train' if cal_mode else 'Eval', cor_accs_valid, cor_accs_test))
model.load_state_dict(weights)
return archs, probs, accuracies
random.seed(seed)
random.shuffle(archs)
for idx, arch in enumerate(archs):
arch_index = api.query_index_by_arch(arch)
metrics = api.get_more_info(arch_index, "cifar10-valid", None, False, False)
gt_accs_10_valid.append(metrics["valid-accuracy"])
metrics = api.get_more_info(arch_index, "cifar10", None, False, False)
gt_accs_10_test.append(metrics["test-accuracy"])
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = "{:}<-{:}".format(i + 1, xin)
op_index = model.op_names.index(op)
select_logits.append(logits[model.edge2index[node_str], op_index])
cur_prob = sum(select_logits).item()
probs.append(cur_prob)
cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0, 1]
cor_prob_test = np.corrcoef(probs, gt_accs_10_test)[0, 1]
print(
"{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test".format(
time_string(), cor_prob_valid, cor_prob_test
)
)
for idx, arch in enumerate(archs):
model.set_cal_mode("dynamic", arch)
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, logits = model(inputs.cuda())
_, preds = torch.max(logits, dim=-1)
correct = (preds == targets.cuda()).float()
accuracies.append(correct.mean().item())
if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)):
cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[: idx + 1])[0, 1]
cor_accs_test = np.corrcoef(accuracies, gt_accs_10_test[: idx + 1])[0, 1]
print(
"{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.".format(
time_string(), idx, len(archs), "Train" if cal_mode else "Eval", cor_accs_valid, cor_accs_test
)
)
model.load_state_dict(weights)
return archs, probs, accuracies

View File

@ -1,18 +1,17 @@
def split_str2indexes(string: str, max_check: int, length_limit=5):
if not isinstance(string, str):
raise ValueError('Invalid scheme for {:}'.format(string))
srangestr = "".join(string.split())
indexes = set()
for srange in srangestr.split(','):
srange = srange.split('-')
if len(srange) != 2:
raise ValueError('invalid srange : {:}'.format(srange))
if length_limit is not None:
assert len(srange[0]) == len(srange[1]) == length_limit, 'invalid srange : {:}'.format(srange)
srange = (int(srange[0]), int(srange[1]))
if not (0 <= srange[0] <= srange[1] < max_check):
raise ValueError('{:} vs {:} vs {:}'.format(srange[0], srange[1], max_check))
for i in range(srange[0], srange[1]+1):
indexes.add(i)
return indexes
if not isinstance(string, str):
raise ValueError("Invalid scheme for {:}".format(string))
srangestr = "".join(string.split())
indexes = set()
for srange in srangestr.split(","):
srange = srange.split("-")
if len(srange) != 2:
raise ValueError("invalid srange : {:}".format(srange))
if length_limit is not None:
assert len(srange[0]) == len(srange[1]) == length_limit, "invalid srange : {:}".format(srange)
srange = (int(srange[0]), int(srange[1]))
if not (0 <= srange[0] <= srange[1] < max_check):
raise ValueError("{:} vs {:} vs {:}".format(srange[0], srange[1], max_check))
for i in range(srange[0], srange[1] + 1):
indexes.add(i)
return indexes

View File

@ -11,309 +11,350 @@ from sklearn.decomposition import TruncatedSVD
def available_module_types():
return (nn.Conv2d, nn.Linear)
return (nn.Conv2d, nn.Linear)
def get_conv2D_Wmats(tensor: np.ndarray) -> List[np.ndarray]:
"""
Extract W slices from a 4 index conv2D tensor of shape: (N,M,i,j) or (M,N,i,j).
Return ij (N x M) matrices
"""
mats = []
N, M, imax, jmax = tensor.shape
assert N + M >= imax + jmax, 'invalid tensor shape detected: {}x{} (NxM), {}x{} (i,j)'.format(N, M, imax, jmax)
for i in range(imax):
for j in range(jmax):
w = tensor[:, :, i, j]
if N < M: w = w.T
mats.append(w)
return mats
"""
Extract W slices from a 4 index conv2D tensor of shape: (N,M,i,j) or (M,N,i,j).
Return ij (N x M) matrices
"""
mats = []
N, M, imax, jmax = tensor.shape
assert N + M >= imax + jmax, "invalid tensor shape detected: {}x{} (NxM), {}x{} (i,j)".format(N, M, imax, jmax)
for i in range(imax):
for j in range(jmax):
w = tensor[:, :, i, j]
if N < M:
w = w.T
mats.append(w)
return mats
def glorot_norm_check(W, N, M, rf_size, lower=0.5, upper=1.5):
"""Check if this layer needs Glorot Normalization Fix"""
"""Check if this layer needs Glorot Normalization Fix"""
kappa = np.sqrt(2 / ((N + M) * rf_size))
norm = np.linalg.norm(W)
kappa = np.sqrt(2 / ((N + M) * rf_size))
norm = np.linalg.norm(W)
check1 = norm / np.sqrt(N * M)
check2 = norm / (kappa * np.sqrt(N * M))
check1 = norm / np.sqrt(N * M)
check2 = norm / (kappa * np.sqrt(N * M))
if (rf_size > 1) and (check2 > lower) and (check2 < upper):
return check2, True
elif (check1 > lower) & (check1 < upper):
return check1, True
else:
if rf_size > 1:
return check2, False
else:
return check1, False
if (rf_size > 1) and (check2 > lower) and (check2 < upper):
return check2, True
elif (check1 > lower) & (check1 < upper):
return check1, True
else:
if rf_size > 1: return check2, False
else: return check1, False
def glorot_norm_fix(w, n, m, rf_size):
"""Apply Glorot Normalization Fix."""
kappa = np.sqrt(2 / ((n + m) * rf_size))
w = w / kappa
return w
"""Apply Glorot Normalization Fix."""
kappa = np.sqrt(2 / ((n + m) * rf_size))
w = w / kappa
return w
def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix):
results = OrderedDict()
count = len(weights)
if count == 0: return results
results = OrderedDict()
count = len(weights)
if count == 0:
return results
for i, weight in enumerate(weights):
M, N = np.min(weight.shape), np.max(weight.shape)
Q = N / M
results[i] = cur_res = OrderedDict(N=N, M=M, Q=Q)
check, checkTF = glorot_norm_check(weight, N, M, count)
cur_res['check'] = check
cur_res['checkTF'] = checkTF
# assume receptive field size is count
if glorot_fix:
weight = glorot_norm_fix(weight, N, M, count)
else:
# probably never needed since we always fix for glorot
weight = weight * np.sqrt(count / 2.0)
for i, weight in enumerate(weights):
M, N = np.min(weight.shape), np.max(weight.shape)
Q = N / M
results[i] = cur_res = OrderedDict(N=N, M=M, Q=Q)
check, checkTF = glorot_norm_check(weight, N, M, count)
cur_res["check"] = check
cur_res["checkTF"] = checkTF
# assume receptive field size is count
if glorot_fix:
weight = glorot_norm_fix(weight, N, M, count)
else:
# probably never needed since we always fix for glorot
weight = weight * np.sqrt(count / 2.0)
if spectralnorms: # spectralnorm is the max eigenvalues
svd = TruncatedSVD(n_components=1, n_iter=7, random_state=10)
svd.fit(weight)
sv = svd.singular_values_
sv_max = np.max(sv)
if normalize:
evals = sv * sv / N
else:
evals = sv * sv
lambda0 = evals[0]
cur_res["spectralnorm"] = lambda0
cur_res["logspectralnorm"] = np.log10(lambda0)
else:
lambda0 = None
if spectralnorms: # spectralnorm is the max eigenvalues
svd = TruncatedSVD(n_components=1, n_iter=7, random_state=10)
svd.fit(weight)
sv = svd.singular_values_
sv_max = np.max(sv)
if normalize:
evals = sv * sv / N
else:
evals = sv * sv
lambda0 = evals[0]
cur_res["spectralnorm"] = lambda0
cur_res["logspectralnorm"] = np.log10(lambda0)
else:
lambda0 = None
if M < min_size:
summary = "Weight matrix {}/{} ({},{}): Skipping: too small (<{})".format(i + 1, count, M, N, min_size)
cur_res["summary"] = summary
continue
elif max_size > 0 and M > max_size:
summary = "Weight matrix {}/{} ({},{}): Skipping: too big (testing) (>{})".format(i + 1, count, M, N, max_size)
cur_res["summary"] = summary
continue
else:
summary = []
if alphas:
import powerlaw
svd = TruncatedSVD(n_components=M - 1, n_iter=7, random_state=10)
svd.fit(weight.astype(float))
sv = svd.singular_values_
if normalize: evals = sv * sv / N
else: evals = sv * sv
if M < min_size:
summary = "Weight matrix {}/{} ({},{}): Skipping: too small (<{})".format(i + 1, count, M, N, min_size)
cur_res["summary"] = summary
continue
elif max_size > 0 and M > max_size:
summary = "Weight matrix {}/{} ({},{}): Skipping: too big (testing) (>{})".format(
i + 1, count, M, N, max_size
)
cur_res["summary"] = summary
continue
else:
summary = []
if alphas:
import powerlaw
lambda_max = np.max(evals)
fit = powerlaw.Fit(evals, xmax=lambda_max, verbose=False)
alpha = fit.alpha
cur_res["alpha"] = alpha
D = fit.D
cur_res["D"] = D
cur_res["lambda_min"] = np.min(evals)
cur_res["lambda_max"] = lambda_max
alpha_weighted = alpha * np.log10(lambda_max)
cur_res["alpha_weighted"] = alpha_weighted
tolerance = lambda_max * M * np.finfo(np.max(sv)).eps
cur_res["rank_loss"] = np.count_nonzero(sv > tolerance, axis=-1)
svd = TruncatedSVD(n_components=M - 1, n_iter=7, random_state=10)
svd.fit(weight.astype(float))
sv = svd.singular_values_
if normalize:
evals = sv * sv / N
else:
evals = sv * sv
logpnorm = np.log10(np.sum([ev ** alpha for ev in evals]))
cur_res["logpnorm"] = logpnorm
lambda_max = np.max(evals)
fit = powerlaw.Fit(evals, xmax=lambda_max, verbose=False)
alpha = fit.alpha
cur_res["alpha"] = alpha
D = fit.D
cur_res["D"] = D
cur_res["lambda_min"] = np.min(evals)
cur_res["lambda_max"] = lambda_max
alpha_weighted = alpha * np.log10(lambda_max)
cur_res["alpha_weighted"] = alpha_weighted
tolerance = lambda_max * M * np.finfo(np.max(sv)).eps
cur_res["rank_loss"] = np.count_nonzero(sv > tolerance, axis=-1)
summary.append(
"Weight matrix {}/{} ({},{}): Alpha: {}, Alpha Weighted: {}, D: {}, pNorm {}".format(i + 1, count, M, N, alpha,
alpha_weighted, D,
logpnorm))
logpnorm = np.log10(np.sum([ev ** alpha for ev in evals]))
cur_res["logpnorm"] = logpnorm
if lognorms:
norm = np.linalg.norm(weight) # Frobenius Norm
cur_res["norm"] = norm
lognorm = np.log10(norm)
cur_res["lognorm"] = lognorm
summary.append(
"Weight matrix {}/{} ({},{}): Alpha: {}, Alpha Weighted: {}, D: {}, pNorm {}".format(
i + 1, count, M, N, alpha, alpha_weighted, D, logpnorm
)
)
X = np.dot(weight.T, weight)
if normalize: X = X / N
normX = np.linalg.norm(X) # Frobenius Norm
cur_res["normX"] = normX
lognormX = np.log10(normX)
cur_res["lognormX"] = lognormX
if lognorms:
norm = np.linalg.norm(weight) # Frobenius Norm
cur_res["norm"] = norm
lognorm = np.log10(norm)
cur_res["lognorm"] = lognorm
summary.append(
"Weight matrix {}/{} ({},{}): LogNorm: {} ; LogNormX: {}".format(i + 1, count, M, N, lognorm, lognormX))
X = np.dot(weight.T, weight)
if normalize:
X = X / N
normX = np.linalg.norm(X) # Frobenius Norm
cur_res["normX"] = normX
lognormX = np.log10(normX)
cur_res["lognormX"] = lognormX
if softranks:
softrank = norm ** 2 / sv_max ** 2
softranklog = np.log10(softrank)
softranklogratio = lognorm / np.log10(sv_max)
cur_res["softrank"] = softrank
cur_res["softranklog"] = softranklog
cur_res["softranklogratio"] = softranklogratio
summary += "{}. Softrank: {}. Softrank log: {}. Softrank log ratio: {}".format(summary, softrank, softranklog,
softranklogratio)
cur_res["summary"] = "\n".join(summary)
return results
summary.append(
"Weight matrix {}/{} ({},{}): LogNorm: {} ; LogNormX: {}".format(i + 1, count, M, N, lognorm, lognormX)
)
if softranks:
softrank = norm ** 2 / sv_max ** 2
softranklog = np.log10(softrank)
softranklogratio = lognorm / np.log10(sv_max)
cur_res["softrank"] = softrank
cur_res["softranklog"] = softranklog
cur_res["softranklogratio"] = softranklogratio
summary += "{}. Softrank: {}. Softrank log: {}. Softrank log ratio: {}".format(
summary, softrank, softranklog, softranklogratio
)
cur_res["summary"] = "\n".join(summary)
return results
def compute_details(results):
"""
Return a pandas data frame.
"""
final_summary = OrderedDict()
"""
Return a pandas data frame.
"""
final_summary = OrderedDict()
metrics = {
# key in "results" : pretty print name
"check": "Check",
"checkTF": "CheckTF",
"norm": "Norm",
"lognorm": "LogNorm",
"normX": "Norm X",
"lognormX": "LogNorm X",
"alpha": "Alpha",
"alpha_weighted": "Alpha Weighted",
"spectralnorm": "Spectral Norm",
"logspectralnorm": "Log Spectral Norm",
"softrank": "Softrank",
"softranklog": "Softrank Log",
"softranklogratio": "Softrank Log Ratio",
"sigma_mp": "Marchenko-Pastur (MP) fit sigma",
"numofSpikes": "Number of spikes per MP fit",
"ratio_numofSpikes": "aka, percent_mass, Number of spikes / total number of evals",
"softrank_mp": "Softrank for MP fit",
"logpnorm": "alpha pNorm"
}
metrics = {
# key in "results" : pretty print name
"check": "Check",
"checkTF": "CheckTF",
"norm": "Norm",
"lognorm": "LogNorm",
"normX": "Norm X",
"lognormX": "LogNorm X",
"alpha": "Alpha",
"alpha_weighted": "Alpha Weighted",
"spectralnorm": "Spectral Norm",
"logspectralnorm": "Log Spectral Norm",
"softrank": "Softrank",
"softranklog": "Softrank Log",
"softranklogratio": "Softrank Log Ratio",
"sigma_mp": "Marchenko-Pastur (MP) fit sigma",
"numofSpikes": "Number of spikes per MP fit",
"ratio_numofSpikes": "aka, percent_mass, Number of spikes / total number of evals",
"softrank_mp": "Softrank for MP fit",
"logpnorm": "alpha pNorm",
}
metrics_stats = []
for metric in metrics:
metrics_stats.append("{}_min".format(metric))
metrics_stats.append("{}_max".format(metric))
metrics_stats.append("{}_avg".format(metric))
metrics_stats.append("{}_compound_min".format(metric))
metrics_stats.append("{}_compound_max".format(metric))
metrics_stats.append("{}_compound_avg".format(metric))
columns = ["layer_id", "layer_type", "N", "M", "layer_count", "slice",
"slice_count", "level", "comment"] + [*metrics] + metrics_stats
metrics_values = {}
metrics_values_compound = {}
for metric in metrics:
metrics_values[metric] = []
metrics_values_compound[metric] = []
layer_count = 0
for layer_id, result in results.items():
layer_count += 1
layer_type = np.NAN
if "layer_type" in result:
layer_type = str(result["layer_type"]).replace("LAYER_TYPE.", "")
compounds = {} # temp var
metrics_stats = []
for metric in metrics:
compounds[metric] = []
metrics_stats.append("{}_min".format(metric))
metrics_stats.append("{}_max".format(metric))
metrics_stats.append("{}_avg".format(metric))
slice_count, Ntotal, Mtotal = 0, 0, 0
for slice_id, summary in result.items():
if not str(slice_id).isdigit():
continue
slice_count += 1
metrics_stats.append("{}_compound_min".format(metric))
metrics_stats.append("{}_compound_max".format(metric))
metrics_stats.append("{}_compound_avg".format(metric))
N = np.NAN
if "N" in summary:
N = summary["N"]
Ntotal += N
columns = (
["layer_id", "layer_type", "N", "M", "layer_count", "slice", "slice_count", "level", "comment"]
+ [*metrics]
+ metrics_stats
)
M = np.NAN
if "M" in summary:
M = summary["M"]
Mtotal += M
metrics_values = {}
metrics_values_compound = {}
data = {"layer_id": layer_id, "layer_type": layer_type, "N": N, "M": M, "slice": slice_id, "level": "SLICE",
"comment": "Slice level"}
for metric in metrics:
if metric in summary:
value = summary[metric]
if value is not None:
metrics_values[metric].append(value)
compounds[metric].append(value)
data[metric] = value
for metric in metrics:
metrics_values[metric] = []
metrics_values_compound[metric] = []
data = {"layer_id": layer_id, "layer_type": layer_type, "N": Ntotal, "M": Mtotal, "slice_count": slice_count,
"level": "LAYER", "comment": "Layer level"}
# Compute the compound value over the slices
for metric, value in compounds.items():
count = len(value)
if count == 0:
continue
layer_count = 0
for layer_id, result in results.items():
layer_count += 1
compound = np.mean(value)
metrics_values_compound[metric].append(compound)
data[metric] = compound
layer_type = np.NAN
if "layer_type" in result:
layer_type = str(result["layer_type"]).replace("LAYER_TYPE.", "")
data = {"layer_count": layer_count, "level": "NETWORK", "comment": "Network Level"}
for metric, metric_name in metrics.items():
if metric not in metrics_values or len(metrics_values[metric]) == 0:
continue
compounds = {} # temp var
for metric in metrics:
compounds[metric] = []
values = metrics_values[metric]
minimum = min(values)
maximum = max(values)
avg = np.mean(values)
final_summary[metric] = avg
# print("{}: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg))
data["{}_min".format(metric)] = minimum
data["{}_max".format(metric)] = maximum
data["{}_avg".format(metric)] = avg
slice_count, Ntotal, Mtotal = 0, 0, 0
for slice_id, summary in result.items():
if not str(slice_id).isdigit():
continue
slice_count += 1
values = metrics_values_compound[metric]
minimum = min(values)
maximum = max(values)
avg = np.mean(values)
final_summary["{}_compound".format(metric)] = avg
# print("{} compound: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg))
data["{}_compound_min".format(metric)] = minimum
data["{}_compound_max".format(metric)] = maximum
data["{}_compound_avg".format(metric)] = avg
N = np.NAN
if "N" in summary:
N = summary["N"]
Ntotal += N
return final_summary
M = np.NAN
if "M" in summary:
M = summary["M"]
Mtotal += M
data = {
"layer_id": layer_id,
"layer_type": layer_type,
"N": N,
"M": M,
"slice": slice_id,
"level": "SLICE",
"comment": "Slice level",
}
for metric in metrics:
if metric in summary:
value = summary[metric]
if value is not None:
metrics_values[metric].append(value)
compounds[metric].append(value)
data[metric] = value
data = {
"layer_id": layer_id,
"layer_type": layer_type,
"N": Ntotal,
"M": Mtotal,
"slice_count": slice_count,
"level": "LAYER",
"comment": "Layer level",
}
# Compute the compound value over the slices
for metric, value in compounds.items():
count = len(value)
if count == 0:
continue
compound = np.mean(value)
metrics_values_compound[metric].append(compound)
data[metric] = compound
data = {"layer_count": layer_count, "level": "NETWORK", "comment": "Network Level"}
for metric, metric_name in metrics.items():
if metric not in metrics_values or len(metrics_values[metric]) == 0:
continue
values = metrics_values[metric]
minimum = min(values)
maximum = max(values)
avg = np.mean(values)
final_summary[metric] = avg
# print("{}: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg))
data["{}_min".format(metric)] = minimum
data["{}_max".format(metric)] = maximum
data["{}_avg".format(metric)] = avg
values = metrics_values_compound[metric]
minimum = min(values)
maximum = max(values)
avg = np.mean(values)
final_summary["{}_compound".format(metric)] = avg
# print("{} compound: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg))
data["{}_compound_min".format(metric)] = minimum
data["{}_compound_max".format(metric)] = maximum
data["{}_compound_avg".format(metric)] = avg
return final_summary
def analyze(model: nn.Module, min_size=50, max_size=0,
alphas: bool = False, lognorms: bool = True, spectralnorms: bool = False,
softranks: bool = False, normalize: bool = False, glorot_fix: bool = False):
"""
Analyze the weight matrices of a model.
:param model: A PyTorch model
:param min_size: The minimum weight matrix size to analyze.
:param max_size: The maximum weight matrix size to analyze (0 = no limit).
:param alphas: Compute the power laws (alpha) of the weight matrices.
Time consuming so disabled by default (use lognorm if you want speed)
:param lognorms: Compute the log norms of the weight matrices.
:param spectralnorms: Compute the spectral norm (max eigenvalue) of the weight matrices.
:param softranks: Compute the soft norm (i.e. StableRank) of the weight matrices.
:param normalize: Normalize or not.
:param glorot_fix:
:return: (a dict of all layers' results, a dict of the summarized info)
"""
names, modules = [], []
for name, module in model.named_modules():
if isinstance(module, available_module_types()):
names.append(name)
modules.append(module)
# print('There are {:} layers to be analyzed in this model.'.format(len(modules)))
all_results = OrderedDict()
for index, module in enumerate(modules):
if isinstance(module, nn.Linear):
weights = [module.weight.cpu().detach().numpy()]
else:
weights = get_conv2D_Wmats(module.weight.cpu().detach().numpy())
results = analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix)
results['id'] = index
results['type'] = type(module)
all_results[index] = results
summary = compute_details(all_results)
return all_results, summary
def analyze(
model: nn.Module,
min_size=50,
max_size=0,
alphas: bool = False,
lognorms: bool = True,
spectralnorms: bool = False,
softranks: bool = False,
normalize: bool = False,
glorot_fix: bool = False,
):
"""
Analyze the weight matrices of a model.
:param model: A PyTorch model
:param min_size: The minimum weight matrix size to analyze.
:param max_size: The maximum weight matrix size to analyze (0 = no limit).
:param alphas: Compute the power laws (alpha) of the weight matrices.
Time consuming so disabled by default (use lognorm if you want speed)
:param lognorms: Compute the log norms of the weight matrices.
:param spectralnorms: Compute the spectral norm (max eigenvalue) of the weight matrices.
:param softranks: Compute the soft norm (i.e. StableRank) of the weight matrices.
:param normalize: Normalize or not.
:param glorot_fix:
:return: (a dict of all layers' results, a dict of the summarized info)
"""
names, modules = [], []
for name, module in model.named_modules():
if isinstance(module, available_module_types()):
names.append(name)
modules.append(module)
# print('There are {:} layers to be analyzed in this model.'.format(len(modules)))
all_results = OrderedDict()
for index, module in enumerate(modules):
if isinstance(module, nn.Linear):
weights = [module.weight.cpu().detach().numpy()]
else:
weights = get_conv2D_Wmats(module.weight.cpu().detach().numpy())
results = analyze_weights(
weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix
)
results["id"] = index
results["type"] = type(module)
all_results[index] = results
summary = compute_details(all_results)
return all_results, summary