update TF models (beta version)
This commit is contained in:
		
							
								
								
									
										422
									
								
								lib/tf_optimizers/weight_decay_optimizers.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										422
									
								
								lib/tf_optimizers/weight_decay_optimizers.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,422 @@ | ||||
| # Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================== | ||||
| """Base class to make optimizers weight decay ready.""" | ||||
| from __future__ import absolute_import | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import tensorflow as tf | ||||
|  | ||||
|  | ||||
| class DecoupledWeightDecayExtension(object): | ||||
|     """This class allows to extend optimizers with decoupled weight decay. | ||||
|  | ||||
|     It implements the decoupled weight decay described by Loshchilov & Hutter | ||||
|     (https://arxiv.org/pdf/1711.05101.pdf), in which the weight decay is | ||||
|     decoupled from the optimization steps w.r.t. to the loss function. | ||||
|     For SGD variants, this simplifies hyperparameter search since it decouples | ||||
|     the settings of weight decay and learning rate. | ||||
|     For adaptive gradient algorithms, it regularizes variables with large | ||||
|     gradients more than L2 regularization would, which was shown to yield | ||||
|     better training loss and generalization error in the paper above. | ||||
|  | ||||
|     This class alone is not an optimizer but rather extends existing | ||||
|     optimizers with decoupled weight decay. We explicitly define the two | ||||
|     examples used in the above paper (SGDW and AdamW), but in general this | ||||
|     can extend any OptimizerX by using | ||||
|     `extend_with_decoupled_weight_decay( | ||||
|         OptimizerX, weight_decay=weight_decay)`. | ||||
|     In order for it to work, it must be the first class the Optimizer with | ||||
|     weight decay inherits from, e.g. | ||||
|  | ||||
|     ```python | ||||
|     class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam): | ||||
|       def __init__(self, weight_decay, *args, **kwargs): | ||||
|         super(AdamW, self).__init__(weight_decay, *args, **kwargs). | ||||
|     ``` | ||||
|  | ||||
|     Note: this extension decays weights BEFORE applying the update based | ||||
|     on the gradient, i.e. this extension only has the desired behaviour for | ||||
|     optimizers which do not depend on the value of'var' in the update step! | ||||
|  | ||||
|     Note: when applying a decay to the learning rate, be sure to manually apply | ||||
|     the decay to the `weight_decay` as well. For example: | ||||
|  | ||||
|     ```python | ||||
|     step = tf.Variable(0, trainable=False) | ||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||
|     # lr and wd can be a function or a tensor | ||||
|     lr = 1e-1 * schedule(step) | ||||
|     wd = lambda: 1e-4 * schedule(step) | ||||
|  | ||||
|     # ... | ||||
|  | ||||
|     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) | ||||
|     ``` | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, weight_decay, **kwargs): | ||||
|         """Extension class that adds weight decay to an optimizer. | ||||
|  | ||||
|         Args: | ||||
|             weight_decay: A `Tensor` or a floating point value, the factor by | ||||
|                 which a variable is decayed in the update step. | ||||
|             **kwargs: Optional list or tuple or set of `Variable` objects to | ||||
|                 decay. | ||||
|         """ | ||||
|         wd = kwargs.pop('weight_decay', weight_decay) | ||||
|         super(DecoupledWeightDecayExtension, self).__init__(**kwargs) | ||||
|         self._decay_var_list = None  # is set in minimize or apply_gradients | ||||
|         self._set_hyper('weight_decay', wd) | ||||
|  | ||||
|     def get_config(self): | ||||
|         config = super(DecoupledWeightDecayExtension, self).get_config() | ||||
|         config.update({ | ||||
|             'weight_decay': | ||||
|             self._serialize_hyperparameter('weight_decay'), | ||||
|         }) | ||||
|         return config | ||||
|  | ||||
|     def minimize(self, | ||||
|                  loss, | ||||
|                  var_list, | ||||
|                  grad_loss=None, | ||||
|                  name=None, | ||||
|                  decay_var_list=None): | ||||
|         """Minimize `loss` by updating `var_list`. | ||||
|  | ||||
|         This method simply computes gradient using `tf.GradientTape` and calls | ||||
|         `apply_gradients()`. If you want to process the gradient before | ||||
|         applying then call `tf.GradientTape` and `apply_gradients()` explicitly | ||||
|         instead of using this function. | ||||
|  | ||||
|         Args: | ||||
|             loss: A callable taking no arguments which returns the value to | ||||
|                 minimize. | ||||
|             var_list: list or tuple of `Variable` objects to update to | ||||
|                 minimize `loss`, or a callable returning the list or tuple of | ||||
|                 `Variable` objects. Use callable when the variable list would | ||||
|                 otherwise be incomplete before `minimize` since the variables | ||||
|                 are created at the first time `loss` is called. | ||||
|             grad_loss: Optional. A `Tensor` holding the gradient computed for | ||||
|                 `loss`. | ||||
|             decay_var_list: Optional list of variables to be decayed. Defaults | ||||
|                 to all variables in var_list. | ||||
|             name: Optional name for the returned operation. | ||||
|         Returns: | ||||
|             An Operation that updates the variables in `var_list`.  If | ||||
|             `global_step` was not `None`, that operation also increments | ||||
|             `global_step`. | ||||
|         Raises: | ||||
|             ValueError: If some of the variables are not `Variable` objects. | ||||
|         """ | ||||
|         self._decay_var_list = set(decay_var_list) if decay_var_list else False | ||||
|         return super(DecoupledWeightDecayExtension, self).minimize( | ||||
|             loss, var_list=var_list, grad_loss=grad_loss, name=name) | ||||
|  | ||||
|     def apply_gradients(self, grads_and_vars, name=None, decay_var_list=None): | ||||
|         """Apply gradients to variables. | ||||
|  | ||||
|         This is the second part of `minimize()`. It returns an `Operation` that | ||||
|         applies gradients. | ||||
|  | ||||
|         Args: | ||||
|             grads_and_vars: List of (gradient, variable) pairs. | ||||
|             name: Optional name for the returned operation.  Default to the | ||||
|                 name passed to the `Optimizer` constructor. | ||||
|             decay_var_list: Optional list of variables to be decayed. Defaults | ||||
|                 to all variables in var_list. | ||||
|         Returns: | ||||
|             An `Operation` that applies the specified gradients. If | ||||
|             `global_step` was not None, that operation also increments | ||||
|             `global_step`. | ||||
|         Raises: | ||||
|             TypeError: If `grads_and_vars` is malformed. | ||||
|             ValueError: If none of the variables have gradients. | ||||
|         """ | ||||
|         self._decay_var_list = set(decay_var_list) if decay_var_list else False | ||||
|         return super(DecoupledWeightDecayExtension, self).apply_gradients( | ||||
|             grads_and_vars, name=name) | ||||
|  | ||||
|     def _decay_weights_op(self, var): | ||||
|         if not self._decay_var_list or var in self._decay_var_list: | ||||
|             return var.assign_sub( | ||||
|                 self._get_hyper('weight_decay', var.dtype) * var, | ||||
|                 self._use_locking) | ||||
|         return tf.no_op() | ||||
|  | ||||
|     def _decay_weights_sparse_op(self, var, indices): | ||||
|         if not self._decay_var_list or var in self._decay_var_list: | ||||
|             update = (-self._get_hyper('weight_decay', var.dtype) * tf.gather( | ||||
|                 var, indices)) | ||||
|             return self._resource_scatter_add(var, indices, update) | ||||
|         return tf.no_op() | ||||
|  | ||||
|     # Here, we overwrite the apply functions that the base optimizer calls. | ||||
|     # super().apply_x resolves to the apply_x function of the BaseOptimizer. | ||||
|  | ||||
|     def _resource_apply_dense(self, grad, var): | ||||
|         with tf.control_dependencies([self._decay_weights_op(var)]): | ||||
|             return super(DecoupledWeightDecayExtension, | ||||
|                          self)._resource_apply_dense(grad, var) | ||||
|  | ||||
|     def _resource_apply_sparse(self, grad, var, indices): | ||||
|         decay_op = self._decay_weights_sparse_op(var, indices) | ||||
|         with tf.control_dependencies([decay_op]): | ||||
|             return super(DecoupledWeightDecayExtension, | ||||
|                          self)._resource_apply_sparse(grad, var, indices) | ||||
|  | ||||
|  | ||||
| def extend_with_decoupled_weight_decay(base_optimizer): | ||||
|     """Factory function returning an optimizer class with decoupled weight | ||||
|     decay. | ||||
|  | ||||
|     Returns an optimizer class. An instance of the returned class computes the | ||||
|     update step of `base_optimizer` and additionally decays the weights. | ||||
|     E.g., the class returned by | ||||
|     `extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam)` is | ||||
|     equivalent to `tfa.optimizers.AdamW`. | ||||
|  | ||||
|     The API of the new optimizer class slightly differs from the API of the | ||||
|     base optimizer: | ||||
|     - The first argument to the constructor is the weight decay rate. | ||||
|     - `minimize` and `apply_gradients` accept the optional keyword argument | ||||
|       `decay_var_list`, which specifies the variables that should be decayed. | ||||
|       If `None`, all variables that are optimized are decayed. | ||||
|  | ||||
|     Usage example: | ||||
|     ```python | ||||
|     # MyAdamW is a new class | ||||
|     MyAdamW = extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam) | ||||
|     # Create a MyAdamW object | ||||
|     optimizer = MyAdamW(weight_decay=0.001, learning_rate=0.001) | ||||
|     # update var1, var2 but only decay var1 | ||||
|     optimizer.minimize(loss, var_list=[var1, var2], decay_variables=[var1]) | ||||
|  | ||||
|     Note: this extension decays weights BEFORE applying the update based | ||||
|     on the gradient, i.e. this extension only has the desired behaviour for | ||||
|     optimizers which do not depend on the value of 'var' in the update step! | ||||
|  | ||||
|     Note: when applying a decay to the learning rate, be sure to manually apply | ||||
|     the decay to the `weight_decay` as well. For example: | ||||
|  | ||||
|     ```python | ||||
|     step = tf.Variable(0, trainable=False) | ||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||
|     # lr and wd can be a function or a tensor | ||||
|     lr = 1e-1 * schedule(step) | ||||
|     wd = lambda: 1e-4 * schedule(step) | ||||
|  | ||||
|     # ... | ||||
|  | ||||
|     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) | ||||
|     ``` | ||||
|  | ||||
|     Note: you might want to register your own custom optimizer using | ||||
|     `tf.keras.utils.get_custom_objects()`. | ||||
|  | ||||
|     Args: | ||||
|         base_optimizer: An optimizer class that inherits from | ||||
|             tf.optimizers.Optimizer. | ||||
|  | ||||
|     Returns: | ||||
|         A new optimizer class that inherits from DecoupledWeightDecayExtension | ||||
|         and base_optimizer. | ||||
|     """ | ||||
|  | ||||
|     class OptimizerWithDecoupledWeightDecay(DecoupledWeightDecayExtension, | ||||
|                                             base_optimizer): | ||||
|         """Base_optimizer with decoupled weight decay. | ||||
|  | ||||
|         This class computes the update step of `base_optimizer` and | ||||
|         additionally decays the variable with the weight decay being | ||||
|         decoupled from the optimization steps w.r.t. to the loss | ||||
|         function, as described by Loshchilov & Hutter | ||||
|         (https://arxiv.org/pdf/1711.05101.pdf). For SGD variants, this | ||||
|         simplifies hyperparameter search since it decouples the settings | ||||
|         of weight decay and learning rate. For adaptive gradient | ||||
|         algorithms, it regularizes variables with large gradients more | ||||
|         than L2 regularization would, which was shown to yield better | ||||
|         training loss and generalization error in the paper above. | ||||
|         """ | ||||
|  | ||||
|         def __init__(self, weight_decay, *args, **kwargs): | ||||
|             # super delegation is necessary here | ||||
|             super(OptimizerWithDecoupledWeightDecay, self).__init__( | ||||
|                 weight_decay, *args, **kwargs) | ||||
|  | ||||
|     return OptimizerWithDecoupledWeightDecay | ||||
|  | ||||
|  | ||||
| class SGDW(DecoupledWeightDecayExtension, tf.keras.optimizers.SGD): | ||||
|     """Optimizer that implements the Momentum algorithm with weight_decay. | ||||
|  | ||||
|     This is an implementation of the SGDW optimizer described in "Decoupled | ||||
|     Weight Decay Regularization" by Loshchilov & Hutter | ||||
|     (https://arxiv.org/abs/1711.05101) | ||||
|     ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). | ||||
|     It computes the update step of `tf.keras.optimizers.SGD` and additionally | ||||
|     decays the variable. Note that this is different from adding | ||||
|     L2 regularization on the variables to the loss. Decoupling the weight decay | ||||
|     from other hyperparameters (in particular the learning rate) simplifies | ||||
|     hyperparameter search. | ||||
|  | ||||
|     For further information see the documentation of the SGD Optimizer. | ||||
|  | ||||
|     This optimizer can also be instantiated as | ||||
|     ```python | ||||
|     extend_with_decoupled_weight_decay(tf.keras.optimizers.SGD, | ||||
|                                        weight_decay=weight_decay) | ||||
|     ``` | ||||
|  | ||||
|     Note: when applying a decay to the learning rate, be sure to manually apply | ||||
|     the decay to the `weight_decay` as well. For example: | ||||
|  | ||||
|     ```python | ||||
|     step = tf.Variable(0, trainable=False) | ||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||
|     # lr and wd can be a function or a tensor | ||||
|     lr = 1e-1 * schedule(step) | ||||
|     wd = lambda: 1e-4 * schedule(step) | ||||
|  | ||||
|     # ... | ||||
|  | ||||
|     optimizer = tfa.optimizers.SGDW( | ||||
|         learning_rate=lr, weight_decay=wd, momentum=0.9) | ||||
|     ``` | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, | ||||
|                  weight_decay, | ||||
|                  learning_rate=0.001, | ||||
|                  momentum=0.0, | ||||
|                  nesterov=False, | ||||
|                  name='SGDW', | ||||
|                  **kwargs): | ||||
|         """Construct a new SGDW optimizer. | ||||
|  | ||||
|         For further information see the documentation of the SGD Optimizer. | ||||
|  | ||||
|         Args: | ||||
|             learning_rate: float hyperparameter >= 0. Learning rate. | ||||
|             momentum: float hyperparameter >= 0 that accelerates SGD in the | ||||
|                 relevant direction and dampens oscillations. | ||||
|             nesterov: boolean. Whether to apply Nesterov momentum. | ||||
|             name: Optional name prefix for the operations created when applying | ||||
|                 gradients.  Defaults to 'SGD'. | ||||
|             **kwargs: keyword arguments. Allowed to be {`clipnorm`, | ||||
|                 `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by | ||||
|                 norm; `clipvalue` is clip gradients by value, `decay` is | ||||
|                 included for backward compatibility to allow time inverse decay | ||||
|                 of learning rate. `lr` is included for backward compatibility, | ||||
|                 recommended to use `learning_rate` instead. | ||||
|         """ | ||||
|         super(SGDW, self).__init__( | ||||
|             weight_decay, | ||||
|             learning_rate=learning_rate, | ||||
|             momentum=momentum, | ||||
|             nesterov=nesterov, | ||||
|             name=name, | ||||
|             **kwargs) | ||||
|  | ||||
|  | ||||
| class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam): | ||||
|     """Optimizer that implements the Adam algorithm with weight decay. | ||||
|  | ||||
|     This is an implementation of the AdamW optimizer described in "Decoupled | ||||
|     Weight Decay Regularization" by Loshchilov & Hutter | ||||
|     (https://arxiv.org/abs/1711.05101) | ||||
|     ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). | ||||
|  | ||||
|     It computes the update step of `tf.keras.optimizers.Adam` and additionally | ||||
|     decays the variable. Note that this is different from adding L2 | ||||
|     regularization on the variables to the loss: it regularizes variables with | ||||
|     large gradients more than L2 regularization would, which was shown to yield | ||||
|     better training loss and generalization error in the paper above. | ||||
|  | ||||
|     For further information see the documentation of the Adam Optimizer. | ||||
|  | ||||
|     This optimizer can also be instantiated as | ||||
|     ```python | ||||
|     extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam, | ||||
|                                        weight_decay=weight_decay) | ||||
|     ``` | ||||
|  | ||||
|     Note: when applying a decay to the learning rate, be sure to manually apply | ||||
|     the decay to the `weight_decay` as well. For example: | ||||
|  | ||||
|     ```python | ||||
|     step = tf.Variable(0, trainable=False) | ||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||
|     # lr and wd can be a function or a tensor | ||||
|     lr = 1e-1 * schedule(step) | ||||
|     wd = lambda: 1e-4 * schedule(step) | ||||
|  | ||||
|     # ... | ||||
|  | ||||
|     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) | ||||
|     ``` | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, | ||||
|                  weight_decay, | ||||
|                  learning_rate=0.001, | ||||
|                  beta_1=0.9, | ||||
|                  beta_2=0.999, | ||||
|                  epsilon=1e-07, | ||||
|                  amsgrad=False, | ||||
|                  name="AdamW", | ||||
|                  **kwargs): | ||||
|         """Construct a new AdamW optimizer. | ||||
|  | ||||
|         For further information see the documentation of the Adam Optimizer. | ||||
|  | ||||
|         Args: | ||||
|             weight_decay: A Tensor or a floating point value. The weight decay. | ||||
|             learning_rate: A Tensor or a floating point value. The learning | ||||
|                 rate. | ||||
|             beta_1: A float value or a constant float tensor. The exponential | ||||
|                 decay rate for the 1st moment estimates. | ||||
|             beta_2: A float value or a constant float tensor. The exponential | ||||
|                 decay rate for the 2nd moment estimates. | ||||
|             epsilon: A small constant for numerical stability. This epsilon is | ||||
|                 "epsilon hat" in the Kingma and Ba paper (in the formula just | ||||
|                 before Section 2.1), not the epsilon in Algorithm 1 of the | ||||
|                 paper. | ||||
|             amsgrad: boolean. Whether to apply AMSGrad variant of this | ||||
|                 algorithm from the paper "On the Convergence of Adam and | ||||
|                 beyond". | ||||
|             name: Optional name for the operations created when applying | ||||
|                 gradients. Defaults to "AdamW". | ||||
|             **kwargs: keyword arguments. Allowed to be {`clipnorm`, | ||||
|                 `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by | ||||
|                 norm; `clipvalue` is clip gradients by value, `decay` is | ||||
|                 included for backward compatibility to allow time inverse decay | ||||
|                 of learning rate. `lr` is included for backward compatibility, | ||||
|                 recommended to use `learning_rate` instead. | ||||
|         """ | ||||
|         super(AdamW, self).__init__( | ||||
|             weight_decay, | ||||
|             learning_rate=learning_rate, | ||||
|             beta_1=beta_1, | ||||
|             beta_2=beta_2, | ||||
|             epsilon=epsilon, | ||||
|             amsgrad=amsgrad, | ||||
|             name=name, | ||||
|             **kwargs) | ||||
		Reference in New Issue
	
	Block a user