Add int search space
This commit is contained in:
		| @@ -22,7 +22,9 @@ from models import CellStructure, CellArchitectures, get_search_spaces | ||||
| from functions import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): | ||||
| def evaluate_all_datasets( | ||||
|     arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | ||||
| ): | ||||
|     machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|     all_infos = {"info": machine_info} | ||||
|     all_dataset_keys = [] | ||||
| @@ -36,27 +38,39 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_c | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/CIFAR.config" | ||||
|             split_info = load_config("configs/nas-benchmark/cifar-split.txt", None, None) | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/cifar-split.txt", None, None | ||||
|             ) | ||||
|         elif dataset.startswith("ImageNet16"): | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|             split_info = load_config("configs/nas-benchmark/{:}-split.txt".format(dataset), None, None) | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|         config = load_config(config_path, {"class_num": class_num, "xshape": xshape}, logger) | ||||
|         config = load_config( | ||||
|             config_path, {"class_num": class_num, "xshape": xshape}, logger | ||||
|         ) | ||||
|         # check whether use splited validation set | ||||
|         if bool(split): | ||||
|             assert dataset == "cifar10" | ||||
|             ValLoaders = { | ||||
|                 "ori-test": torch.utils.data.DataLoader( | ||||
|                     valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                     valid_data, | ||||
|                     batch_size=config.batch_size, | ||||
|                     shuffle=False, | ||||
|                     num_workers=workers, | ||||
|                     pin_memory=True, | ||||
|                 ) | ||||
|             } | ||||
|             assert len(train_data) == len(split_info.train) + len( | ||||
|                 split_info.valid | ||||
|             ), "invalid length : {:} vs {:} + {:}".format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|             ), "invalid length : {:} vs {:} + {:}".format( | ||||
|                 len(train_data), len(split_info.train), len(split_info.valid) | ||||
|             ) | ||||
|             train_data_v2 = deepcopy(train_data) | ||||
|             train_data_v2.transform = valid_data.transform | ||||
|             valid_data = train_data_v2 | ||||
| @@ -79,47 +93,67 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_c | ||||
|         else: | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=True, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=False, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             if dataset == "cifar10": | ||||
|                 ValLoaders = {"ori-test": valid_loader} | ||||
|             elif dataset == "cifar100": | ||||
|                 cifar100_splits = load_config("configs/nas-benchmark/cifar100-test-split.txt", None, None) | ||||
|                 cifar100_splits = load_config( | ||||
|                     "configs/nas-benchmark/cifar100-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             elif dataset == "ImageNet16-120": | ||||
|                 imagenet16_splits = load_config("configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None) | ||||
|                 imagenet16_splits = load_config( | ||||
|                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
| @@ -132,13 +166,24 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_c | ||||
|             dataset_key = dataset_key + "-valid" | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | ||||
|                 dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size | ||||
|                 dataset_key, | ||||
|                 len(train_data), | ||||
|                 len(valid_data), | ||||
|                 len(train_loader), | ||||
|                 len(valid_loader), | ||||
|                 config.batch_size, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)) | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) | ||||
|         ) | ||||
|         for key, value in ValLoaders.items(): | ||||
|             logger.log("Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))) | ||||
|         results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|             logger.log( | ||||
|                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) | ||||
|             ) | ||||
|         results = evaluate_for_seed( | ||||
|             arch_config, config, arch, train_loader, ValLoaders, seed, logger | ||||
|         ) | ||||
|         all_infos[dataset_key] = results | ||||
|         all_dataset_keys.append(dataset_key) | ||||
|     all_infos["all_dataset_keys"] = all_dataset_keys | ||||
| @@ -146,7 +191,18 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_c | ||||
|  | ||||
|  | ||||
| def main( | ||||
|     save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config | ||||
|     save_dir, | ||||
|     workers, | ||||
|     datasets, | ||||
|     xpaths, | ||||
|     splits, | ||||
|     use_less, | ||||
|     srange, | ||||
|     arch_index, | ||||
|     seeds, | ||||
|     cover_mode, | ||||
|     meta_info, | ||||
|     arch_config, | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
| @@ -154,7 +210,9 @@ def main( | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|     assert len(srange) == 2 and 0 <= srange[0] <= srange[1], "invalid srange : {:}".format(srange) | ||||
|     assert ( | ||||
|         len(srange) == 2 and 0 <= srange[0] <= srange[1] | ||||
|     ), "invalid srange : {:}".format(srange) | ||||
|  | ||||
|     if use_less: | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format( | ||||
| @@ -170,9 +228,9 @@ def main( | ||||
|     assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format( | ||||
|         srange[0], srange[1], meta_info["total"] | ||||
|     ) | ||||
|     assert arch_index == -1 or srange[0] <= arch_index <= srange[1], "invalid range : {:} vs. {:} vs. {:}".format( | ||||
|         srange[0], arch_index, srange[1] | ||||
|     ) | ||||
|     assert ( | ||||
|         arch_index == -1 or srange[0] <= arch_index <= srange[1] | ||||
|     ), "invalid range : {:} vs. {:} vs. {:}".format(srange[0], arch_index, srange[1]) | ||||
|     if arch_index == -1: | ||||
|         to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | ||||
|     else: | ||||
| @@ -200,7 +258,13 @@ def main( | ||||
|         arch = all_archs[index] | ||||
|         logger.log( | ||||
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format( | ||||
|                 "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seeds, "-" * 15 | ||||
|                 "-" * 15, | ||||
|                 i, | ||||
|                 len(to_evaluate_indexes), | ||||
|                 index, | ||||
|                 meta_info["total"], | ||||
|                 seeds, | ||||
|                 "-" * 15, | ||||
|             ) | ||||
|         ) | ||||
|         # logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
| @@ -212,10 +276,18 @@ def main( | ||||
|             to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | ||||
|             if to_save_name.exists(): | ||||
|                 if cover_mode: | ||||
|                     logger.log("Find existing file : {:}, remove it before evaluation".format(to_save_name)) | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, remove it before evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     os.remove(str(to_save_name)) | ||||
|                 else: | ||||
|                     logger.log("Find existing file : {:}, skip this evaluation".format(to_save_name)) | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, skip this evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     has_continue = True | ||||
|                     continue | ||||
|             results = evaluate_all_datasets( | ||||
| @@ -232,7 +304,13 @@ def main( | ||||
|             torch.save(results, to_save_name) | ||||
|             logger.log( | ||||
|                 "{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format( | ||||
|                     "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seed, to_save_name | ||||
|                     "-" * 15, | ||||
|                     i, | ||||
|                     len(to_evaluate_indexes), | ||||
|                     index, | ||||
|                     meta_info["total"], | ||||
|                     seed, | ||||
|                     to_save_name, | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
| @@ -242,7 +320,9 @@ def main( | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | ||||
|         ) | ||||
|         logger.log("This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))) | ||||
|         logger.log( | ||||
|             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|         logger.log( | ||||
|             "{:}   {:74s}   {:}".format( | ||||
| @@ -258,7 +338,9 @@ def main( | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): | ||||
| def train_single_model( | ||||
|     save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
| @@ -269,19 +351,32 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
|         Path(save_dir) | ||||
|         / "specifics" | ||||
|         / "{:}-{:}-{:}-{:}".format( | ||||
|             "LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"] | ||||
|             "LESS" if use_less else "FULL", | ||||
|             model_str, | ||||
|             arch_config["channel"], | ||||
|             arch_config["num_cells"], | ||||
|         ) | ||||
|     ) | ||||
|     logger = Logger(str(save_dir), 0, False) | ||||
|     if model_str in CellArchitectures: | ||||
|         arch = CellArchitectures[model_str] | ||||
|         logger.log("The model string is found in pre-defined architecture dict : {:}".format(model_str)) | ||||
|         logger.log( | ||||
|             "The model string is found in pre-defined architecture dict : {:}".format( | ||||
|                 model_str | ||||
|             ) | ||||
|         ) | ||||
|     else: | ||||
|         try: | ||||
|             arch = CellStructure.str2structure(model_str) | ||||
|         except: | ||||
|             raise ValueError("Invalid model string : {:}. It can not be found or parsed.".format(model_str)) | ||||
|     assert arch.check_valid_op(get_search_spaces("cell", "full")), "{:} has the invalid op.".format(arch) | ||||
|             raise ValueError( | ||||
|                 "Invalid model string : {:}. It can not be found or parsed.".format( | ||||
|                     model_str | ||||
|                 ) | ||||
|             ) | ||||
|     assert arch.check_valid_op( | ||||
|         get_search_spaces("cell", "full") | ||||
|     ), "{:} has the invalid op.".format(arch) | ||||
|     logger.log("Start train-evaluate {:}".format(arch.tostr())) | ||||
|     logger.log("arch_config : {:}".format(arch_config)) | ||||
|  | ||||
| @@ -294,27 +389,55 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
|         ) | ||||
|         to_save_name = save_dir / "seed-{:04d}.pth".format(seed) | ||||
|         if to_save_name.exists(): | ||||
|             logger.log("Find the existing file {:}, directly load!".format(to_save_name)) | ||||
|             logger.log( | ||||
|                 "Find the existing file {:}, directly load!".format(to_save_name) | ||||
|             ) | ||||
|             checkpoint = torch.load(to_save_name) | ||||
|         else: | ||||
|             logger.log("Does not find the existing file {:}, train and evaluate!".format(to_save_name)) | ||||
|             logger.log( | ||||
|                 "Does not find the existing file {:}, train and evaluate!".format( | ||||
|                     to_save_name | ||||
|                 ) | ||||
|             ) | ||||
|             checkpoint = evaluate_all_datasets( | ||||
|                 arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | ||||
|                 arch, | ||||
|                 datasets, | ||||
|                 xpaths, | ||||
|                 splits, | ||||
|                 use_less, | ||||
|                 seed, | ||||
|                 arch_config, | ||||
|                 workers, | ||||
|                 logger, | ||||
|             ) | ||||
|             torch.save(checkpoint, to_save_name) | ||||
|         # log information | ||||
|         logger.log("{:}".format(checkpoint["info"])) | ||||
|         all_dataset_keys = checkpoint["all_dataset_keys"] | ||||
|         for dataset_key in all_dataset_keys: | ||||
|             logger.log("\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15)) | ||||
|             logger.log( | ||||
|                 "\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15) | ||||
|             ) | ||||
|             dataset_info = checkpoint[dataset_key] | ||||
|             # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|             logger.log("Flops = {:} MB, Params = {:} MB".format(dataset_info["flop"], dataset_info["param"])) | ||||
|             logger.log( | ||||
|                 "Flops = {:} MB, Params = {:} MB".format( | ||||
|                     dataset_info["flop"], dataset_info["param"] | ||||
|                 ) | ||||
|             ) | ||||
|             logger.log("config : {:}".format(dataset_info["config"])) | ||||
|             logger.log("Training State (finish) = {:}".format(dataset_info["finish-train"])) | ||||
|             logger.log( | ||||
|                 "Training State (finish) = {:}".format(dataset_info["finish-train"]) | ||||
|             ) | ||||
|             last_epoch = dataset_info["total_epoch"] - 1 | ||||
|             train_acc1es, train_acc5es = dataset_info["train_acc1es"], dataset_info["train_acc5es"] | ||||
|             valid_acc1es, valid_acc5es = dataset_info["valid_acc1es"], dataset_info["valid_acc5es"] | ||||
|             train_acc1es, train_acc5es = ( | ||||
|                 dataset_info["train_acc1es"], | ||||
|                 dataset_info["train_acc5es"], | ||||
|             ) | ||||
|             valid_acc1es, valid_acc5es = ( | ||||
|                 dataset_info["valid_acc1es"], | ||||
|                 dataset_info["valid_acc5es"], | ||||
|             ) | ||||
|             logger.log( | ||||
|                 "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( | ||||
|                     train_acc1es[last_epoch], | ||||
| @@ -328,7 +451,9 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
|         # measure elapsed time | ||||
|         seed_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format(convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)) | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format( | ||||
|                 _is, len(seeds), seed, need_time | ||||
| @@ -340,7 +465,11 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|     aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") | ||||
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|     print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2))) | ||||
|     print( | ||||
|         "There are {:} archs vs {:}.".format( | ||||
|             len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     random.seed(88)  # please do not change this line for reproducibility | ||||
|     random.shuffle(archs) | ||||
| @@ -352,10 +481,12 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | ||||
|     ), "please check the 0-th architecture : {:}".format(archs[0]) | ||||
|     assert ( | ||||
|         archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|         archs[9].tostr() | ||||
|         == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 9-th architecture : {:}".format(archs[9]) | ||||
|     assert ( | ||||
|         archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|         archs[123].tostr() | ||||
|         == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 123-th architecture : {:}".format(archs[123]) | ||||
|     total_arch = len(archs) | ||||
|  | ||||
| @@ -374,11 +505,21 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|         and valid_split[10] == 18 | ||||
|         and valid_split[111] == 242 | ||||
|     ), "{:} {:} {:} - {:} {:} {:}".format( | ||||
|         train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111] | ||||
|         train_split[0], | ||||
|         train_split[10], | ||||
|         train_split[111], | ||||
|         valid_split[0], | ||||
|         valid_split[10], | ||||
|         valid_split[111], | ||||
|     ) | ||||
|     splits = {num: {"train": train_split, "valid": valid_split}} | ||||
|  | ||||
|     info = {"archs": [x.tostr() for x in archs], "total": total_arch, "max_node": max_node, "splits": splits} | ||||
|     info = { | ||||
|         "archs": [x.tostr() for x in archs], | ||||
|         "total": total_arch, | ||||
|         "max_node": max_node, | ||||
|         "splits": splits, | ||||
|     } | ||||
|  | ||||
|     save_dir = Path(save_dir) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
| @@ -404,7 +545,11 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|     print("save the training script into {:} and {:}".format(script_name_full, script_name_less)) | ||||
|     print( | ||||
|         "save the training script into {:} and {:}".format( | ||||
|             script_name_full, script_name_less | ||||
|         ) | ||||
|     ) | ||||
|     full_file.close() | ||||
|     less_file.close() | ||||
|  | ||||
| @@ -425,29 +570,56 @@ if __name__ == "__main__": | ||||
|     # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|     # parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-Bench-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|         description="NAS-Bench-201", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, required=True, help="The script mode.") | ||||
|     parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", type=str, help="Folder to save checkpoints and log." | ||||
|     ) | ||||
|     parser.add_argument("--max_node", type=int, help="The maximum node in a cell.") | ||||
|     # use for train the model | ||||
|     parser.add_argument("--workers", type=int, default=8, help="number of data loading workers (default: 2)") | ||||
|     parser.add_argument("--srange", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument( | ||||
|         "--arch_index", type=int, default=-1, help="The architecture index to be evaluated (cover mode)." | ||||
|         "--workers", | ||||
|         type=int, | ||||
|         default=8, | ||||
|         help="number of data loading workers (default: 2)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--srange", type=int, nargs="+", help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--arch_index", | ||||
|         type=int, | ||||
|         default=-1, | ||||
|         help="The architecture index to be evaluated (cover mode).", | ||||
|     ) | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument("--xpaths", type=str, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--splits", type=int, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--use_less", type=int, default=0, choices=[0, 1], help="Using the less-training-epoch config.") | ||||
|     parser.add_argument("--seeds", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument( | ||||
|         "--xpaths", type=str, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--splits", type=int, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--use_less", | ||||
|         type=int, | ||||
|         default=0, | ||||
|         choices=[0, 1], | ||||
|         help="Using the less-training-epoch config.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seeds", type=int, nargs="+", help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument("--channel", type=int, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.") | ||||
|     parser.add_argument( | ||||
|         "--num_cells", type=int, help="The number of cells in one stage." | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith("specific-"), "invalid mode : {:}".format( | ||||
|         args.mode | ||||
|     ) | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith( | ||||
|         "specific-" | ||||
|     ), "invalid mode : {:}".format(args.mode) | ||||
|  | ||||
|     if args.mode == "meta": | ||||
|         generate_meta_info(args.save_dir, args.max_node) | ||||
| @@ -470,11 +642,15 @@ if __name__ == "__main__": | ||||
|         assert meta_path.exists(), "{:} does not exist.".format(meta_path) | ||||
|         meta_info = torch.load(meta_path) | ||||
|         # check whether args is ok | ||||
|         assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], "invalid length of srange args: {:}".format( | ||||
|             args.srange | ||||
|         assert ( | ||||
|             len(args.srange) == 2 and args.srange[0] <= args.srange[1] | ||||
|         ), "invalid length of srange args: {:}".format(args.srange) | ||||
|         assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format( | ||||
|             args.seeds | ||||
|         ) | ||||
|         assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format(args.seeds) | ||||
|         assert len(args.datasets) == len(args.xpaths) == len(args.splits), "invalid infos : {:} vs {:} vs {:}".format( | ||||
|         assert ( | ||||
|             len(args.datasets) == len(args.xpaths) == len(args.splits) | ||||
|         ), "invalid infos : {:} vs {:} vs {:}".format( | ||||
|             len(args.datasets), len(args.xpaths), len(args.splits) | ||||
|         ) | ||||
|         assert args.workers > 0, "invalid number of workers : {:}".format(args.workers) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user