Add int search space
This commit is contained in:
		| @@ -47,15 +47,21 @@ def visualize_relative_ranking(vis_save_dir): | ||||
|     print("{:} start to visualize relative ranking".format(time_string())) | ||||
|     # maximum accuracy with ResNet-level params 11472 | ||||
|     x_010_accs = [ | ||||
|         cifar010_info["test_accs"][i] if cifar010_info["params"][i] <= cifar010_info["params"][11472] else -1 | ||||
|         cifar010_info["test_accs"][i] | ||||
|         if cifar010_info["params"][i] <= cifar010_info["params"][11472] | ||||
|         else -1 | ||||
|         for i in indexes | ||||
|     ] | ||||
|     x_100_accs = [ | ||||
|         cifar100_info["test_accs"][i] if cifar100_info["params"][i] <= cifar100_info["params"][11472] else -1 | ||||
|         cifar100_info["test_accs"][i] | ||||
|         if cifar100_info["params"][i] <= cifar100_info["params"][11472] | ||||
|         else -1 | ||||
|         for i in indexes | ||||
|     ] | ||||
|     x_img_accs = [ | ||||
|         imagenet_info["test_accs"][i] if imagenet_info["params"][i] <= imagenet_info["params"][11472] else -1 | ||||
|         imagenet_info["test_accs"][i] | ||||
|         if imagenet_info["params"][i] <= imagenet_info["params"][11472] | ||||
|         else -1 | ||||
|         for i in indexes | ||||
|     ] | ||||
|  | ||||
| @@ -79,8 +85,15 @@ def visualize_relative_ranking(vis_save_dir): | ||||
|     plt.xlim(min(indexes), max(indexes)) | ||||
|     plt.ylim(min(indexes), max(indexes)) | ||||
|     # plt.ylabel('y').set_rotation(0) | ||||
|     plt.yticks(np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize, rotation="vertical") | ||||
|     plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize) | ||||
|     plt.yticks( | ||||
|         np.arange(min(indexes), max(indexes), max(indexes) // 6), | ||||
|         fontsize=LegendFontsize, | ||||
|         rotation="vertical", | ||||
|     ) | ||||
|     plt.xticks( | ||||
|         np.arange(min(indexes), max(indexes), max(indexes) // 6), | ||||
|         fontsize=LegendFontsize, | ||||
|     ) | ||||
|     # ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8, label='CIFAR-100') | ||||
|     # ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8, label='ImageNet-16-120') | ||||
|     # ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8, label='CIFAR-10') | ||||
| @@ -113,7 +126,9 @@ def visualize_relative_ranking(vis_save_dir): | ||||
|     ) | ||||
|     fig = plt.figure(figsize=figsize) | ||||
|     plt.axis("off") | ||||
|     h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5) | ||||
|     h = sns.heatmap( | ||||
|         CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5 | ||||
|     ) | ||||
|     save_path = (vis_save_dir / "co-relation-all.pdf").resolve() | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | ||||
|     print("{:} save into {:}".format(time_string(), save_path)) | ||||
| @@ -142,8 +157,16 @@ def visualize_relative_ranking(vis_save_dir): | ||||
|         ) | ||||
|         fig = plt.figure(figsize=figsize) | ||||
|         plt.axis("off") | ||||
|         h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5) | ||||
|         save_path = (vis_save_dir / "co-relation-top-{:}.pdf".format(len(selected_indexes))).resolve() | ||||
|         h = sns.heatmap( | ||||
|             CoRelMatrix, | ||||
|             annot=True, | ||||
|             annot_kws={"size": sns_size}, | ||||
|             fmt=".3f", | ||||
|             linewidths=0.5, | ||||
|         ) | ||||
|         save_path = ( | ||||
|             vis_save_dir / "co-relation-top-{:}.pdf".format(len(selected_indexes)) | ||||
|         ).resolve() | ||||
|         fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | ||||
|         print("{:} save into {:}".format(time_string(), save_path)) | ||||
|     plt.close("all") | ||||
| @@ -155,7 +178,14 @@ def visualize_info(meta_file, dataset, vis_save_dir): | ||||
|     if not cache_file_path.exists(): | ||||
|         print("Do not find cache file : {:}".format(cache_file_path)) | ||||
|         nas_bench = API(str(meta_file)) | ||||
|         params, flops, train_accs, valid_accs, test_accs, otest_accs = [], [], [], [], [], [] | ||||
|         params, flops, train_accs, valid_accs, test_accs, otest_accs = ( | ||||
|             [], | ||||
|             [], | ||||
|             [], | ||||
|             [], | ||||
|             [], | ||||
|             [], | ||||
|         ) | ||||
|         for index in range(len(nas_bench)): | ||||
|             info = nas_bench.query_by_index(index, use_12epochs_result=False) | ||||
|             resx = info.get_comput_costs(dataset) | ||||
| @@ -239,7 +269,13 @@ def visualize_info(meta_file, dataset, vis_save_dir): | ||||
|         plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | ||||
|     ax.scatter(params, valid_accs, marker="o", s=0.5, c="tab:blue") | ||||
|     ax.scatter( | ||||
|         [resnet["params"]], [resnet["valid_acc"]], marker="*", s=resnet_scale, c="tab:orange", label="resnet", alpha=0.4 | ||||
|         [resnet["params"]], | ||||
|         [resnet["valid_acc"]], | ||||
|         marker="*", | ||||
|         s=resnet_scale, | ||||
|         c="tab:orange", | ||||
|         label="resnet", | ||||
|         alpha=0.4, | ||||
|     ) | ||||
|     plt.grid(zorder=0) | ||||
|     ax.set_axisbelow(True) | ||||
| @@ -321,7 +357,10 @@ def visualize_info(meta_file, dataset, vis_save_dir): | ||||
|     fig = plt.figure(figsize=figsize) | ||||
|     ax = fig.add_subplot(111) | ||||
|     plt.xlim(0, max(indexes)) | ||||
|     plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 5), fontsize=LegendFontsize) | ||||
|     plt.xticks( | ||||
|         np.arange(min(indexes), max(indexes), max(indexes) // 5), | ||||
|         fontsize=LegendFontsize, | ||||
|     ) | ||||
|     if dataset == "cifar10": | ||||
|         plt.ylim(50, 100) | ||||
|         plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | ||||
| @@ -357,7 +396,11 @@ def visualize_info(meta_file, dataset, vis_save_dir): | ||||
| def visualize_rank_over_time(meta_file, vis_save_dir): | ||||
|     print("\n" + "-" * 150) | ||||
|     vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     print("{:} start to visualize rank-over-time into {:}".format(time_string(), vis_save_dir)) | ||||
|     print( | ||||
|         "{:} start to visualize rank-over-time into {:}".format( | ||||
|             time_string(), vis_save_dir | ||||
|         ) | ||||
|     ) | ||||
|     cache_file_path = vis_save_dir / "rank-over-time-cache-info.pth" | ||||
|     if not cache_file_path.exists(): | ||||
|         print("Do not find cache file : {:}".format(cache_file_path)) | ||||
| @@ -434,17 +477,26 @@ def visualize_rank_over_time(meta_file, vis_save_dir): | ||||
|         plt.xlim(min(indexes), max(indexes)) | ||||
|         plt.ylim(min(indexes), max(indexes)) | ||||
|         plt.yticks( | ||||
|             np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize, rotation="vertical" | ||||
|             np.arange(min(indexes), max(indexes), max(indexes) // 6), | ||||
|             fontsize=LegendFontsize, | ||||
|             rotation="vertical", | ||||
|         ) | ||||
|         plt.xticks( | ||||
|             np.arange(min(indexes), max(indexes), max(indexes) // 6), | ||||
|             fontsize=LegendFontsize, | ||||
|         ) | ||||
|         plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize) | ||||
|         ax.scatter(indexes, valid_ord_lbls, marker="^", s=0.5, c="tab:green", alpha=0.8) | ||||
|         ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8) | ||||
|         ax.scatter([-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-10 validation") | ||||
|         ax.scatter( | ||||
|             [-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-10 validation" | ||||
|         ) | ||||
|         ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="CIFAR-10 test") | ||||
|         plt.grid(zorder=0) | ||||
|         ax.set_axisbelow(True) | ||||
|         plt.legend(loc="upper left", fontsize=LegendFontsize) | ||||
|         ax.set_xlabel("architecture ranking in the final test accuracy", fontsize=LabelSize) | ||||
|         ax.set_xlabel( | ||||
|             "architecture ranking in the final test accuracy", fontsize=LabelSize | ||||
|         ) | ||||
|         ax.set_ylabel("architecture ranking in the validation set", fontsize=LabelSize) | ||||
|         save_path = (vis_save_dir / "time-{:03d}.pdf".format(sepoch)).resolve() | ||||
|         fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | ||||
| @@ -464,7 +516,9 @@ def write_video(save_dir): | ||||
|     # shape  = (ximage.shape[1], ximage.shape[0]) | ||||
|     shape = (1000, 1000) | ||||
|     # writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 25, shape) | ||||
|     writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape) | ||||
|     writer = cv2.VideoWriter( | ||||
|         str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape | ||||
|     ) | ||||
|     for idx, image in enumerate(images): | ||||
|         ximage = cv2.imread(str(image)) | ||||
|         _image = cv2.resize(ximage, shape) | ||||
| @@ -490,9 +544,13 @@ def plot_results_nas_v2(api, dataset_xset_a, dataset_xset_b, root, file_name, y_ | ||||
|         accuracies = [] | ||||
|         for x in all_indexes: | ||||
|             info = api.arch2infos_full[x] | ||||
|             metrics = info.get_metrics(dataset_xset_a[0], dataset_xset_a[1], None, False) | ||||
|             metrics = info.get_metrics( | ||||
|                 dataset_xset_a[0], dataset_xset_a[1], None, False | ||||
|             ) | ||||
|             accuracies_A.append(metrics["accuracy"]) | ||||
|             metrics = info.get_metrics(dataset_xset_b[0], dataset_xset_b[1], None, False) | ||||
|             metrics = info.get_metrics( | ||||
|                 dataset_xset_b[0], dataset_xset_b[1], None, False | ||||
|             ) | ||||
|             accuracies_B.append(metrics["accuracy"]) | ||||
|             accuracies.append((accuracies_A[-1], accuracies_B[-1])) | ||||
|         if indexes is None: | ||||
| @@ -580,7 +638,14 @@ def plot_results_nas(api, dataset, xset, root, file_name, y_lims): | ||||
|     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | ||||
|  | ||||
|     for idx, legend in enumerate(legends): | ||||
|         plt.plot(indexes, All_Accs[legend], color=color_set[idx], linestyle="-", label="{:}".format(legend), lw=2) | ||||
|         plt.plot( | ||||
|             indexes, | ||||
|             All_Accs[legend], | ||||
|             color=color_set[idx], | ||||
|             linestyle="-", | ||||
|             label="{:}".format(legend), | ||||
|             lw=2, | ||||
|         ) | ||||
|         print( | ||||
|             "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | ||||
|                 legend, | ||||
| @@ -646,13 +711,19 @@ def just_show(api): | ||||
|         return xresults | ||||
|  | ||||
|     for xkey in xpaths.keys(): | ||||
|         all_paths = ["{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]] | ||||
|         all_paths = [ | ||||
|             "{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey] | ||||
|         ] | ||||
|         all_datas = [torch.load(xpath) for xpath in all_paths] | ||||
|         accyss = [get_accs(xdatas) for xdatas in all_datas] | ||||
|         accyss = np.array(accyss) | ||||
|         print("\nxkey = {:}".format(xkey)) | ||||
|         for i in range(accyss.shape[1]): | ||||
|             print("---->>>> {:.2f}$\\pm${:.2f}".format(accyss[:, i].mean(), accyss[:, i].std())) | ||||
|             print( | ||||
|                 "---->>>> {:.2f}$\\pm${:.2f}".format( | ||||
|                     accyss[:, i].mean(), accyss[:, i].std() | ||||
|                 ) | ||||
|             ) | ||||
|  | ||||
|     print("\n{:}".format(get_accs(None, 11472)))  # resnet | ||||
|     pairs = [ | ||||
| @@ -665,10 +736,16 @@ def just_show(api): | ||||
|     ] | ||||
|     for dataset, metric_on_set in pairs: | ||||
|         arch_index, highest_acc = api.find_best(dataset, metric_on_set) | ||||
|         print("[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}".format(dataset, metric_on_set, arch_index, highest_acc)) | ||||
|         print( | ||||
|             "[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}".format( | ||||
|                 dataset, metric_on_set, arch_index, highest_acc | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_lims, x_maxs): | ||||
| def show_nas_sharing_w( | ||||
|     api, dataset, subset, vis_save_dir, sufix, file_name, y_lims, x_maxs | ||||
| ): | ||||
|     color_set = ["r", "b", "g", "c", "m", "y", "k"] | ||||
|     dpi, width, height = 300, 3400, 2600 | ||||
|     LabelSize, LegendFontsize = 28, 28 | ||||
| @@ -685,12 +762,24 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l | ||||
|     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | ||||
|  | ||||
|     xpaths = { | ||||
|         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|     } | ||||
|     """ | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
| @@ -713,16 +802,20 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l | ||||
|     def get_accs(xdata): | ||||
|         epochs, xresults = xdata["epoch"], [] | ||||
|         if -1 in xdata["genotypes"]: | ||||
|             metrics = api.arch2infos_full[api.query_index_by_arch(xdata["genotypes"][-1])].get_metrics( | ||||
|             metrics = api.arch2infos_full[ | ||||
|                 api.query_index_by_arch(xdata["genotypes"][-1]) | ||||
|             ].get_metrics(dataset, subset, None, False) | ||||
|         else: | ||||
|             metrics = api.arch2infos_full[api.random()].get_metrics( | ||||
|                 dataset, subset, None, False | ||||
|             ) | ||||
|         else: | ||||
|             metrics = api.arch2infos_full[api.random()].get_metrics(dataset, subset, None, False) | ||||
|         xresults.append(metrics["accuracy"]) | ||||
|         for iepoch in range(epochs): | ||||
|             genotype = xdata["genotypes"][iepoch] | ||||
|             index = api.query_index_by_arch(genotype) | ||||
|             metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False) | ||||
|             metrics = api.arch2infos_full[index].get_metrics( | ||||
|                 dataset, subset, None, False | ||||
|             ) | ||||
|             xresults.append(metrics["accuracy"]) | ||||
|         return xresults | ||||
|  | ||||
| @@ -735,7 +828,9 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l | ||||
|  | ||||
|     for idx, method in enumerate(xxxstrs): | ||||
|         xkey = method | ||||
|         all_paths = ["{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]] | ||||
|         all_paths = [ | ||||
|             "{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey] | ||||
|         ] | ||||
|         all_datas = [torch.load(xpath, map_location="cpu") for xpath in all_paths] | ||||
|         accyss = [get_accs(xdatas) for xdatas in all_datas] | ||||
|         accyss = np.array(accyss) | ||||
| @@ -762,7 +857,9 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l | ||||
|     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | ||||
|  | ||||
|  | ||||
| def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file_name, y_lims, x_maxs): | ||||
| def show_nas_sharing_w_v2( | ||||
|     api, data_sub_a, data_sub_b, vis_save_dir, sufix, file_name, y_lims, x_maxs | ||||
| ): | ||||
|     color_set = ["r", "b", "g", "c", "m", "y", "k"] | ||||
|     dpi, width, height = 300, 3400, 2600 | ||||
|     LabelSize, LegendFontsize = 28, 28 | ||||
| @@ -779,12 +876,24 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file | ||||
|     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | ||||
|  | ||||
|     xpaths = { | ||||
|         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format(sufix), | ||||
|         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format( | ||||
|             sufix | ||||
|         ), | ||||
|     } | ||||
|     """ | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
| @@ -807,16 +916,20 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file | ||||
|     def get_accs(xdata, dataset, subset): | ||||
|         epochs, xresults = xdata["epoch"], [] | ||||
|         if -1 in xdata["genotypes"]: | ||||
|             metrics = api.arch2infos_full[api.query_index_by_arch(xdata["genotypes"][-1])].get_metrics( | ||||
|             metrics = api.arch2infos_full[ | ||||
|                 api.query_index_by_arch(xdata["genotypes"][-1]) | ||||
|             ].get_metrics(dataset, subset, None, False) | ||||
|         else: | ||||
|             metrics = api.arch2infos_full[api.random()].get_metrics( | ||||
|                 dataset, subset, None, False | ||||
|             ) | ||||
|         else: | ||||
|             metrics = api.arch2infos_full[api.random()].get_metrics(dataset, subset, None, False) | ||||
|         xresults.append(metrics["accuracy"]) | ||||
|         for iepoch in range(epochs): | ||||
|             genotype = xdata["genotypes"][iepoch] | ||||
|             index = api.query_index_by_arch(genotype) | ||||
|             metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False) | ||||
|             metrics = api.arch2infos_full[index].get_metrics( | ||||
|                 dataset, subset, None, False | ||||
|             ) | ||||
|             xresults.append(metrics["accuracy"]) | ||||
|         return xresults | ||||
|  | ||||
| @@ -829,10 +942,16 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file | ||||
|  | ||||
|     for idx, method in enumerate(xxxstrs): | ||||
|         xkey = method | ||||
|         all_paths = ["{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]] | ||||
|         all_paths = [ | ||||
|             "{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey] | ||||
|         ] | ||||
|         all_datas = [torch.load(xpath, map_location="cpu") for xpath in all_paths] | ||||
|         accyss_A = np.array([get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas]) | ||||
|         accyss_B = np.array([get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas]) | ||||
|         accyss_A = np.array( | ||||
|             [get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas] | ||||
|         ) | ||||
|         accyss_B = np.array( | ||||
|             [get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas] | ||||
|         ) | ||||
|         epochs = list(range(accyss_A.shape[1])) | ||||
|         for j, accyss in enumerate([accyss_A, accyss_B]): | ||||
|             if x_maxs == 50: | ||||
| @@ -859,7 +978,9 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file | ||||
|             ) | ||||
|             setname = data_sub_a if j == 0 else data_sub_b | ||||
|             print( | ||||
|                 "{:} -- {:} ---- {:.2f}$\\pm${:.2f}".format(method, setname, accyss[:, -1].mean(), accyss[:, -1].std()) | ||||
|                 "{:} -- {:} ---- {:.2f}$\\pm${:.2f}".format( | ||||
|                     method, setname, accyss[:, -1].mean(), accyss[:, -1].std() | ||||
|                 ) | ||||
|             ) | ||||
|     # plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|     plt.legend(loc=0, fontsize=LegendFontsize) | ||||
| @@ -871,7 +992,10 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file | ||||
| def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|     print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset)) | ||||
|     LRs = ["0.01", "0.02", "0.1", "0.2", "0.5"] | ||||
|     checkpoints = ["./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth".format(x) for x in LRs] | ||||
|     checkpoints = [ | ||||
|         "./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth".format(x) | ||||
|         for x in LRs | ||||
|     ] | ||||
|     acc_lr_dict, indexes = {}, None | ||||
|     for lr, checkpoint in zip(LRs, checkpoints): | ||||
|         all_indexes, accuracies = torch.load(checkpoint, map_location="cpu"), [] | ||||
| @@ -882,7 +1006,11 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|         if indexes is None: | ||||
|             indexes = list(range(len(accuracies))) | ||||
|         acc_lr_dict[lr] = np.array(sorted(accuracies)) | ||||
|         print("LR={:.3f}, mean={:}, std={:}".format(float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std())) | ||||
|         print( | ||||
|             "LR={:.3f}, mean={:}, std={:}".format( | ||||
|                 float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std() | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     color_set = ["r", "b", "g", "c", "m", "y", "k"] | ||||
|     dpi, width, height = 300, 3400, 2600 | ||||
| @@ -903,7 +1031,15 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|         legend = "LR={:.2f}".format(float(LR)) | ||||
|         # color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|         color, linestyle = color_set[idx], "-" | ||||
|         plt.plot(indexes, acc_lr_dict[LR], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8) | ||||
|         plt.plot( | ||||
|             indexes, | ||||
|             acc_lr_dict[LR], | ||||
|             color=color, | ||||
|             linestyle=linestyle, | ||||
|             label=legend, | ||||
|             lw=2, | ||||
|             alpha=0.8, | ||||
|         ) | ||||
|         print( | ||||
|             "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | ||||
|                 legend, | ||||
| @@ -922,7 +1058,10 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
| def show_rea(api, root, dataset, xset, file_name, y_lims): | ||||
|     print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset)) | ||||
|     SSs = [3, 5, 10] | ||||
|     checkpoints = ["./output/search-cell-nas-bench-201/R-EA-cifar10-SS{:}/results.pth".format(x) for x in SSs] | ||||
|     checkpoints = [ | ||||
|         "./output/search-cell-nas-bench-201/R-EA-cifar10-SS{:}/results.pth".format(x) | ||||
|         for x in SSs | ||||
|     ] | ||||
|     acc_ss_dict, indexes = {}, None | ||||
|     for ss, checkpoint in zip(SSs, checkpoints): | ||||
|         all_indexes, accuracies = torch.load(checkpoint, map_location="cpu"), [] | ||||
| @@ -933,7 +1072,11 @@ def show_rea(api, root, dataset, xset, file_name, y_lims): | ||||
|         if indexes is None: | ||||
|             indexes = list(range(len(accuracies))) | ||||
|         acc_ss_dict[ss] = np.array(sorted(accuracies)) | ||||
|         print("Sample-Size={:2d}, mean={:}, std={:}".format(ss, acc_ss_dict[ss].mean(), acc_ss_dict[ss].std())) | ||||
|         print( | ||||
|             "Sample-Size={:2d}, mean={:}, std={:}".format( | ||||
|                 ss, acc_ss_dict[ss].mean(), acc_ss_dict[ss].std() | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     color_set = ["r", "b", "g", "c", "m", "y", "k"] | ||||
|     dpi, width, height = 300, 3400, 2600 | ||||
| @@ -954,7 +1097,15 @@ def show_rea(api, root, dataset, xset, file_name, y_lims): | ||||
|         legend = "sample-size={:2d}".format(ss) | ||||
|         # color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|         color, linestyle = color_set[idx], "-" | ||||
|         plt.plot(indexes, acc_ss_dict[ss], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8) | ||||
|         plt.plot( | ||||
|             indexes, | ||||
|             acc_ss_dict[ss], | ||||
|             color=color, | ||||
|             linestyle=linestyle, | ||||
|             label=legend, | ||||
|             lw=2, | ||||
|             alpha=0.8, | ||||
|         ) | ||||
|         print( | ||||
|             "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | ||||
|                 legend, | ||||
| @@ -973,7 +1124,8 @@ def show_rea(api, root, dataset, xset, file_name, y_lims): | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-Bench-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|         description="NAS-Bench-201", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
| @@ -981,7 +1133,12 @@ if __name__ == "__main__": | ||||
|         default="./output/search-cell-nas-bench-201/visuals", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--api_path", type=str, default=None, help="The path to the NAS-Bench-201 benchmark file.") | ||||
|     parser.add_argument( | ||||
|         "--api_path", | ||||
|         type=str, | ||||
|         default=None, | ||||
|         help="The path to the NAS-Bench-201 benchmark file.", | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     vis_save_dir = Path(args.save_dir) | ||||
| @@ -1066,9 +1223,25 @@ if __name__ == "__main__": | ||||
|     ) | ||||
|  | ||||
|     show_nas_sharing_w( | ||||
|         api, "cifar10-valid", "x-valid", vis_save_dir, "BN0", "BN0-XX-CIFAR010-VALID.pdf", (0, 100, 10), 250 | ||||
|         api, | ||||
|         "cifar10-valid", | ||||
|         "x-valid", | ||||
|         vis_save_dir, | ||||
|         "BN0", | ||||
|         "BN0-XX-CIFAR010-VALID.pdf", | ||||
|         (0, 100, 10), | ||||
|         250, | ||||
|     ) | ||||
|     show_nas_sharing_w( | ||||
|         api, | ||||
|         "cifar10", | ||||
|         "ori-test", | ||||
|         vis_save_dir, | ||||
|         "BN0", | ||||
|         "BN0-XX-CIFAR010-TEST.pdf", | ||||
|         (0, 100, 10), | ||||
|         250, | ||||
|     ) | ||||
|     show_nas_sharing_w(api, "cifar10", "ori-test", vis_save_dir, "BN0", "BN0-XX-CIFAR010-TEST.pdf", (0, 100, 10), 250) | ||||
|     """ | ||||
|   for x_maxs in [50, 250]: | ||||
|     show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user