Add int search space
This commit is contained in:
		| @@ -51,23 +51,35 @@ def evaluate_all_datasets( | ||||
|         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|         # load the configuration | ||||
|         if dataset == "cifar10" or dataset == "cifar100": | ||||
|             split_info = load_config("configs/nas-benchmark/cifar-split.txt", None, None) | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/cifar-split.txt", None, None | ||||
|             ) | ||||
|         elif dataset.startswith("ImageNet16"): | ||||
|             split_info = load_config("configs/nas-benchmark/{:}-split.txt".format(dataset), None, None) | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|         config = load_config(config_path, dict(class_num=class_num, xshape=xshape), logger) | ||||
|         config = load_config( | ||||
|             config_path, dict(class_num=class_num, xshape=xshape), logger | ||||
|         ) | ||||
|         # check whether use the splitted validation set | ||||
|         if bool(split): | ||||
|             assert dataset == "cifar10" | ||||
|             ValLoaders = { | ||||
|                 "ori-test": torch.utils.data.DataLoader( | ||||
|                     valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                     valid_data, | ||||
|                     batch_size=config.batch_size, | ||||
|                     shuffle=False, | ||||
|                     num_workers=workers, | ||||
|                     pin_memory=True, | ||||
|                 ) | ||||
|             } | ||||
|             assert len(train_data) == len(split_info.train) + len( | ||||
|                 split_info.valid | ||||
|             ), "invalid length : {:} vs {:} + {:}".format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|             ), "invalid length : {:} vs {:} + {:}".format( | ||||
|                 len(train_data), len(split_info.train), len(split_info.valid) | ||||
|             ) | ||||
|             train_data_v2 = deepcopy(train_data) | ||||
|             train_data_v2.transform = valid_data.transform | ||||
|             valid_data = train_data_v2 | ||||
| @@ -90,47 +102,67 @@ def evaluate_all_datasets( | ||||
|         else: | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=True, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=False, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             if dataset == "cifar10": | ||||
|                 ValLoaders = {"ori-test": valid_loader} | ||||
|             elif dataset == "cifar100": | ||||
|                 cifar100_splits = load_config("configs/nas-benchmark/cifar100-test-split.txt", None, None) | ||||
|                 cifar100_splits = load_config( | ||||
|                     "configs/nas-benchmark/cifar100-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             elif dataset == "ImageNet16-120": | ||||
|                 imagenet16_splits = load_config("configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None) | ||||
|                 imagenet16_splits = load_config( | ||||
|                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
| @@ -143,19 +175,36 @@ def evaluate_all_datasets( | ||||
|             dataset_key = dataset_key + "-valid" | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | ||||
|                 dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size | ||||
|                 dataset_key, | ||||
|                 len(train_data), | ||||
|                 len(valid_data), | ||||
|                 len(train_loader), | ||||
|                 len(valid_loader), | ||||
|                 config.batch_size, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)) | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) | ||||
|         ) | ||||
|         for key, value in ValLoaders.items(): | ||||
|             logger.log("Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))) | ||||
|             logger.log( | ||||
|                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) | ||||
|             ) | ||||
|         # arch-index= 9930, arch=|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| | ||||
|         # this genotype is the architecture with the highest accuracy on CIFAR-100 validation set | ||||
|         genotype = "|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|" | ||||
|         arch_config = dict2config( | ||||
|             dict(name="infer.shape.tiny", channels=channels, genotype=genotype, num_classes=class_num), None | ||||
|             dict( | ||||
|                 name="infer.shape.tiny", | ||||
|                 channels=channels, | ||||
|                 genotype=genotype, | ||||
|                 num_classes=class_num, | ||||
|             ), | ||||
|             None, | ||||
|         ) | ||||
|         results = bench_evaluate_for_seed( | ||||
|             arch_config, config, train_loader, ValLoaders, seed, logger | ||||
|         ) | ||||
|         results = bench_evaluate_for_seed(arch_config, config, train_loader, ValLoaders, seed, logger) | ||||
|         all_infos[dataset_key] = results | ||||
|         all_dataset_keys.append(dataset_key) | ||||
|     all_infos["all_dataset_keys"] = all_dataset_keys | ||||
| @@ -183,8 +232,12 @@ def main( | ||||
|     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | ||||
|     logger.log("-" * 100) | ||||
|     logger.log( | ||||
|         "Start evaluating range =: {:06d} - {:06d}".format(min(to_evaluate_indexes), max(to_evaluate_indexes)) | ||||
|         + "({:} in total) / {:06d} with cover-mode={:}".format(len(to_evaluate_indexes), len(nets), cover_mode) | ||||
|         "Start evaluating range =: {:06d} - {:06d}".format( | ||||
|             min(to_evaluate_indexes), max(to_evaluate_indexes) | ||||
|         ) | ||||
|         + "({:} in total) / {:06d} with cover-mode={:}".format( | ||||
|             len(to_evaluate_indexes), len(nets), cover_mode | ||||
|         ) | ||||
|     ) | ||||
|     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|         logger.log( | ||||
| @@ -199,7 +252,13 @@ def main( | ||||
|         channelstr = nets[index] | ||||
|         logger.log( | ||||
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format( | ||||
|                 time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, "-" * 15 | ||||
|                 time_string(), | ||||
|                 i, | ||||
|                 len(to_evaluate_indexes), | ||||
|                 index, | ||||
|                 len(nets), | ||||
|                 seeds, | ||||
|                 "-" * 15, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("{:} {:} {:}".format("-" * 15, channelstr, "-" * 15)) | ||||
| @@ -210,17 +269,33 @@ def main( | ||||
|             to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | ||||
|             if to_save_name.exists(): | ||||
|                 if cover_mode: | ||||
|                     logger.log("Find existing file : {:}, remove it before evaluation".format(to_save_name)) | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, remove it before evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     os.remove(str(to_save_name)) | ||||
|                 else: | ||||
|                     logger.log("Find existing file : {:}, skip this evaluation".format(to_save_name)) | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, skip this evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     has_continue = True | ||||
|                     continue | ||||
|             results = evaluate_all_datasets(channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger) | ||||
|             results = evaluate_all_datasets( | ||||
|                 channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger | ||||
|             ) | ||||
|             torch.save(results, to_save_name) | ||||
|             logger.log( | ||||
|                 "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format( | ||||
|                     time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, to_save_name | ||||
|                     time_string(), | ||||
|                     i, | ||||
|                     len(to_evaluate_indexes), | ||||
|                     index, | ||||
|                     len(nets), | ||||
|                     seeds, | ||||
|                     to_save_name, | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
| @@ -230,7 +305,9 @@ def main( | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | ||||
|         ) | ||||
|         logger.log("This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))) | ||||
|         logger.log( | ||||
|             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|         logger.log( | ||||
|             "{:}   {:74s}   {:}".format( | ||||
| @@ -277,16 +354,24 @@ def filter_indexes(xlist, mode, save_dir, seeds): | ||||
|     SLURM_PROCID, SLURM_NTASKS = "SLURM_PROCID", "SLURM_NTASKS" | ||||
|     if SLURM_PROCID in os.environ and SLURM_NTASKS in os.environ:  # run on the slurm | ||||
|         proc_id, ntasks = int(os.environ[SLURM_PROCID]), int(os.environ[SLURM_NTASKS]) | ||||
|         assert 0 <= proc_id < ntasks, "invalid proc_id {:} vs ntasks {:}".format(proc_id, ntasks) | ||||
|         scales = [int(float(i) / ntasks * len(all_indexes)) for i in range(ntasks)] + [len(all_indexes)] | ||||
|         assert 0 <= proc_id < ntasks, "invalid proc_id {:} vs ntasks {:}".format( | ||||
|             proc_id, ntasks | ||||
|         ) | ||||
|         scales = [int(float(i) / ntasks * len(all_indexes)) for i in range(ntasks)] + [ | ||||
|             len(all_indexes) | ||||
|         ] | ||||
|         per_job = [] | ||||
|         for i in range(ntasks): | ||||
|             xs, xe = min(max(scales[i], 0), len(all_indexes) - 1), min(max(scales[i + 1] - 1, 0), len(all_indexes) - 1) | ||||
|             xs, xe = min(max(scales[i], 0), len(all_indexes) - 1), min( | ||||
|                 max(scales[i + 1] - 1, 0), len(all_indexes) - 1 | ||||
|             ) | ||||
|             per_job.append((xs, xe)) | ||||
|         for i, srange in enumerate(per_job): | ||||
|             print("  -->> {:2d}/{:02d} : {:}".format(i, ntasks, srange)) | ||||
|         current_range = per_job[proc_id] | ||||
|         all_indexes = [all_indexes[i] for i in range(current_range[0], current_range[1] + 1)] | ||||
|         all_indexes = [ | ||||
|             all_indexes[i] for i in range(current_range[0], current_range[1] + 1) | ||||
|         ] | ||||
|         # set the device id | ||||
|         device = proc_id % torch.cuda.device_count() | ||||
|         torch.cuda.set_device(device) | ||||
| @@ -301,30 +386,67 @@ def filter_indexes(xlist, mode, save_dir, seeds): | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NATS-Bench (size search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|         description="NATS-Bench (size search space)", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, required=True, choices=["new", "cover"], help="The script mode.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", type=str, default="output/NATS-Bench-size", help="Folder to save checkpoints and log." | ||||
|         "--mode", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         choices=["new", "cover"], | ||||
|         help="The script mode.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="output/NATS-Bench-size", | ||||
|         help="Folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--candidateC", | ||||
|         type=int, | ||||
|         nargs="+", | ||||
|         default=[8, 16, 24, 32, 40, 48, 56, 64], | ||||
|         help=".", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--num_layers", type=int, default=5, help="The number of layers in a network." | ||||
|     ) | ||||
|     parser.add_argument("--candidateC", type=int, nargs="+", default=[8, 16, 24, 32, 40, 48, 56, 64], help=".") | ||||
|     parser.add_argument("--num_layers", type=int, default=5, help="The number of layers in a network.") | ||||
|     parser.add_argument("--check_N", type=int, default=32768, help="For safety.") | ||||
|     # use for train the model | ||||
|     parser.add_argument("--workers", type=int, default=8, help="The number of data loading workers (default: 2)") | ||||
|     parser.add_argument("--srange", type=str, required=True, help="The range of models to be evaluated") | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument("--xpaths", type=str, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--splits", type=int, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument( | ||||
|         "--hyper", type=str, default="12", choices=["01", "12", "90"], help="The tag for hyper-parameters." | ||||
|         "--workers", | ||||
|         type=int, | ||||
|         default=8, | ||||
|         help="The number of data loading workers (default: 2)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--srange", type=str, required=True, help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument( | ||||
|         "--xpaths", type=str, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--splits", type=int, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hyper", | ||||
|         type=str, | ||||
|         default="12", | ||||
|         choices=["01", "12", "90"], | ||||
|         help="The tag for hyper-parameters.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seeds", type=int, nargs="+", help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument("--seeds", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     nets = traverse_net(args.candidateC, args.num_layers) | ||||
|     if len(nets) != args.check_N: | ||||
|         raise ValueError("Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)) | ||||
|         raise ValueError( | ||||
|             "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) | ||||
|         ) | ||||
|  | ||||
|     opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper) | ||||
|     if not os.path.isfile(opt_config): | ||||
| @@ -337,12 +459,16 @@ if __name__ == "__main__": | ||||
|         raise ValueError("invalid length of seeds args: {:}".format(args.seeds)) | ||||
|     if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): | ||||
|         raise ValueError( | ||||
|             "invalid infos : {:} vs {:} vs {:}".format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|             "invalid infos : {:} vs {:} vs {:}".format( | ||||
|                 len(args.datasets), len(args.xpaths), len(args.splits) | ||||
|             ) | ||||
|         ) | ||||
|     if args.workers <= 0: | ||||
|         raise ValueError("invalid number of workers : {:}".format(args.workers)) | ||||
|  | ||||
|     target_indexes = filter_indexes(to_evaluate_indexes, args.mode, save_dir, args.seeds) | ||||
|     target_indexes = filter_indexes( | ||||
|         to_evaluate_indexes, args.mode, save_dir, args.seeds | ||||
|     ) | ||||
|  | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|   | ||||
		Reference in New Issue
	
	Block a user