Add int search space
This commit is contained in:
		| @@ -57,23 +57,35 @@ def evaluate_all_datasets( | ||||
|         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|         # load the configuration | ||||
|         if dataset == "cifar10" or dataset == "cifar100": | ||||
|             split_info = load_config("configs/nas-benchmark/cifar-split.txt", None, None) | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/cifar-split.txt", None, None | ||||
|             ) | ||||
|         elif dataset.startswith("ImageNet16"): | ||||
|             split_info = load_config("configs/nas-benchmark/{:}-split.txt".format(dataset), None, None) | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|         config = load_config(config_path, dict(class_num=class_num, xshape=xshape), logger) | ||||
|         config = load_config( | ||||
|             config_path, dict(class_num=class_num, xshape=xshape), logger | ||||
|         ) | ||||
|         # check whether use splited validation set | ||||
|         if bool(split): | ||||
|             assert dataset == "cifar10" | ||||
|             ValLoaders = { | ||||
|                 "ori-test": torch.utils.data.DataLoader( | ||||
|                     valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                     valid_data, | ||||
|                     batch_size=config.batch_size, | ||||
|                     shuffle=False, | ||||
|                     num_workers=workers, | ||||
|                     pin_memory=True, | ||||
|                 ) | ||||
|             } | ||||
|             assert len(train_data) == len(split_info.train) + len( | ||||
|                 split_info.valid | ||||
|             ), "invalid length : {:} vs {:} + {:}".format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|             ), "invalid length : {:} vs {:} + {:}".format( | ||||
|                 len(train_data), len(split_info.train), len(split_info.valid) | ||||
|             ) | ||||
|             train_data_v2 = deepcopy(train_data) | ||||
|             train_data_v2.transform = valid_data.transform | ||||
|             valid_data = train_data_v2 | ||||
| @@ -96,47 +108,67 @@ def evaluate_all_datasets( | ||||
|         else: | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=True, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=False, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             if dataset == "cifar10": | ||||
|                 ValLoaders = {"ori-test": valid_loader} | ||||
|             elif dataset == "cifar100": | ||||
|                 cifar100_splits = load_config("configs/nas-benchmark/cifar100-test-split.txt", None, None) | ||||
|                 cifar100_splits = load_config( | ||||
|                     "configs/nas-benchmark/cifar100-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             elif dataset == "ImageNet16-120": | ||||
|                 imagenet16_splits = load_config("configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None) | ||||
|                 imagenet16_splits = load_config( | ||||
|                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest), | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
| @@ -149,12 +181,21 @@ def evaluate_all_datasets( | ||||
|             dataset_key = dataset_key + "-valid" | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | ||||
|                 dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size | ||||
|                 dataset_key, | ||||
|                 len(train_data), | ||||
|                 len(valid_data), | ||||
|                 len(train_loader), | ||||
|                 len(valid_loader), | ||||
|                 config.batch_size, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)) | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) | ||||
|         ) | ||||
|         for key, value in ValLoaders.items(): | ||||
|             logger.log("Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))) | ||||
|             logger.log( | ||||
|                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) | ||||
|             ) | ||||
|         arch_config = dict2config( | ||||
|             dict( | ||||
|                 name="infer.tiny", | ||||
| @@ -165,7 +206,9 @@ def evaluate_all_datasets( | ||||
|             ), | ||||
|             None, | ||||
|         ) | ||||
|         results = bench_evaluate_for_seed(arch_config, config, train_loader, ValLoaders, seed, logger) | ||||
|         results = bench_evaluate_for_seed( | ||||
|             arch_config, config, train_loader, ValLoaders, seed, logger | ||||
|         ) | ||||
|         all_infos[dataset_key] = results | ||||
|         all_dataset_keys.append(dataset_key) | ||||
|     all_infos["all_dataset_keys"] = all_dataset_keys | ||||
| @@ -194,8 +237,12 @@ def main( | ||||
|     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | ||||
|     logger.log("-" * 100) | ||||
|     logger.log( | ||||
|         "Start evaluating range =: {:06d} - {:06d}".format(min(to_evaluate_indexes), max(to_evaluate_indexes)) | ||||
|         + "({:} in total) / {:06d} with cover-mode={:}".format(len(to_evaluate_indexes), len(nets), cover_mode) | ||||
|         "Start evaluating range =: {:06d} - {:06d}".format( | ||||
|             min(to_evaluate_indexes), max(to_evaluate_indexes) | ||||
|         ) | ||||
|         + "({:} in total) / {:06d} with cover-mode={:}".format( | ||||
|             len(to_evaluate_indexes), len(nets), cover_mode | ||||
|         ) | ||||
|     ) | ||||
|     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|         logger.log( | ||||
| @@ -210,7 +257,13 @@ def main( | ||||
|         arch = nets[index] | ||||
|         logger.log( | ||||
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format( | ||||
|                 time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, "-" * 15 | ||||
|                 time_string(), | ||||
|                 i, | ||||
|                 len(to_evaluate_indexes), | ||||
|                 index, | ||||
|                 len(nets), | ||||
|                 seeds, | ||||
|                 "-" * 15, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) | ||||
| @@ -221,10 +274,18 @@ def main( | ||||
|             to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | ||||
|             if to_save_name.exists(): | ||||
|                 if cover_mode: | ||||
|                     logger.log("Find existing file : {:}, remove it before evaluation".format(to_save_name)) | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, remove it before evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     os.remove(str(to_save_name)) | ||||
|                 else: | ||||
|                     logger.log("Find existing file : {:}, skip this evaluation".format(to_save_name)) | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, skip this evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     has_continue = True | ||||
|                     continue | ||||
|             results = evaluate_all_datasets( | ||||
| @@ -241,7 +302,13 @@ def main( | ||||
|             torch.save(results, to_save_name) | ||||
|             logger.log( | ||||
|                 "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format( | ||||
|                     time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, to_save_name | ||||
|                     time_string(), | ||||
|                     i, | ||||
|                     len(to_evaluate_indexes), | ||||
|                     index, | ||||
|                     len(nets), | ||||
|                     seeds, | ||||
|                     to_save_name, | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
| @@ -251,7 +318,9 @@ def main( | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | ||||
|         ) | ||||
|         logger.log("This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))) | ||||
|         logger.log( | ||||
|             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|         logger.log( | ||||
|             "{:}   {:74s}   {:}".format( | ||||
| @@ -267,7 +336,9 @@ def main( | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): | ||||
| def train_single_model( | ||||
|     save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
| @@ -278,19 +349,32 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
|         Path(save_dir) | ||||
|         / "specifics" | ||||
|         / "{:}-{:}-{:}-{:}".format( | ||||
|             "LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"] | ||||
|             "LESS" if use_less else "FULL", | ||||
|             model_str, | ||||
|             arch_config["channel"], | ||||
|             arch_config["num_cells"], | ||||
|         ) | ||||
|     ) | ||||
|     logger = Logger(str(save_dir), 0, False) | ||||
|     if model_str in CellArchitectures: | ||||
|         arch = CellArchitectures[model_str] | ||||
|         logger.log("The model string is found in pre-defined architecture dict : {:}".format(model_str)) | ||||
|         logger.log( | ||||
|             "The model string is found in pre-defined architecture dict : {:}".format( | ||||
|                 model_str | ||||
|             ) | ||||
|         ) | ||||
|     else: | ||||
|         try: | ||||
|             arch = CellStructure.str2structure(model_str) | ||||
|         except: | ||||
|             raise ValueError("Invalid model string : {:}. It can not be found or parsed.".format(model_str)) | ||||
|     assert arch.check_valid_op(get_search_spaces("cell", "full")), "{:} has the invalid op.".format(arch) | ||||
|             raise ValueError( | ||||
|                 "Invalid model string : {:}. It can not be found or parsed.".format( | ||||
|                     model_str | ||||
|                 ) | ||||
|             ) | ||||
|     assert arch.check_valid_op( | ||||
|         get_search_spaces("cell", "full") | ||||
|     ), "{:} has the invalid op.".format(arch) | ||||
|     logger.log("Start train-evaluate {:}".format(arch.tostr())) | ||||
|     logger.log("arch_config : {:}".format(arch_config)) | ||||
|  | ||||
| @@ -303,27 +387,55 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
|         ) | ||||
|         to_save_name = save_dir / "seed-{:04d}.pth".format(seed) | ||||
|         if to_save_name.exists(): | ||||
|             logger.log("Find the existing file {:}, directly load!".format(to_save_name)) | ||||
|             logger.log( | ||||
|                 "Find the existing file {:}, directly load!".format(to_save_name) | ||||
|             ) | ||||
|             checkpoint = torch.load(to_save_name) | ||||
|         else: | ||||
|             logger.log("Does not find the existing file {:}, train and evaluate!".format(to_save_name)) | ||||
|             logger.log( | ||||
|                 "Does not find the existing file {:}, train and evaluate!".format( | ||||
|                     to_save_name | ||||
|                 ) | ||||
|             ) | ||||
|             checkpoint = evaluate_all_datasets( | ||||
|                 arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | ||||
|                 arch, | ||||
|                 datasets, | ||||
|                 xpaths, | ||||
|                 splits, | ||||
|                 use_less, | ||||
|                 seed, | ||||
|                 arch_config, | ||||
|                 workers, | ||||
|                 logger, | ||||
|             ) | ||||
|             torch.save(checkpoint, to_save_name) | ||||
|         # log information | ||||
|         logger.log("{:}".format(checkpoint["info"])) | ||||
|         all_dataset_keys = checkpoint["all_dataset_keys"] | ||||
|         for dataset_key in all_dataset_keys: | ||||
|             logger.log("\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15)) | ||||
|             logger.log( | ||||
|                 "\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15) | ||||
|             ) | ||||
|             dataset_info = checkpoint[dataset_key] | ||||
|             # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|             logger.log("Flops = {:} MB, Params = {:} MB".format(dataset_info["flop"], dataset_info["param"])) | ||||
|             logger.log( | ||||
|                 "Flops = {:} MB, Params = {:} MB".format( | ||||
|                     dataset_info["flop"], dataset_info["param"] | ||||
|                 ) | ||||
|             ) | ||||
|             logger.log("config : {:}".format(dataset_info["config"])) | ||||
|             logger.log("Training State (finish) = {:}".format(dataset_info["finish-train"])) | ||||
|             logger.log( | ||||
|                 "Training State (finish) = {:}".format(dataset_info["finish-train"]) | ||||
|             ) | ||||
|             last_epoch = dataset_info["total_epoch"] - 1 | ||||
|             train_acc1es, train_acc5es = dataset_info["train_acc1es"], dataset_info["train_acc5es"] | ||||
|             valid_acc1es, valid_acc5es = dataset_info["valid_acc1es"], dataset_info["valid_acc5es"] | ||||
|             train_acc1es, train_acc5es = ( | ||||
|                 dataset_info["train_acc1es"], | ||||
|                 dataset_info["train_acc5es"], | ||||
|             ) | ||||
|             valid_acc1es, valid_acc5es = ( | ||||
|                 dataset_info["valid_acc1es"], | ||||
|                 dataset_info["valid_acc5es"], | ||||
|             ) | ||||
|             logger.log( | ||||
|                 "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( | ||||
|                     train_acc1es[last_epoch], | ||||
| @@ -337,7 +449,9 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
|         # measure elapsed time | ||||
|         seed_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format(convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)) | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format( | ||||
|                 _is, len(seeds), seed, need_time | ||||
| @@ -349,7 +463,11 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|     aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") | ||||
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|     print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2))) | ||||
|     print( | ||||
|         "There are {:} archs vs {:}.".format( | ||||
|             len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     random.seed(88)  # please do not change this line for reproducibility | ||||
|     random.shuffle(archs) | ||||
| @@ -361,10 +479,12 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | ||||
|     ), "please check the 0-th architecture : {:}".format(archs[0]) | ||||
|     assert ( | ||||
|         archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|         archs[9].tostr() | ||||
|         == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 9-th architecture : {:}".format(archs[9]) | ||||
|     assert ( | ||||
|         archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|         archs[123].tostr() | ||||
|         == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 123-th architecture : {:}".format(archs[123]) | ||||
|     total_arch = len(archs) | ||||
|  | ||||
| @@ -383,11 +503,21 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|         and valid_split[10] == 18 | ||||
|         and valid_split[111] == 242 | ||||
|     ), "{:} {:} {:} - {:} {:} {:}".format( | ||||
|         train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111] | ||||
|         train_split[0], | ||||
|         train_split[10], | ||||
|         train_split[111], | ||||
|         valid_split[0], | ||||
|         valid_split[10], | ||||
|         valid_split[111], | ||||
|     ) | ||||
|     splits = {num: {"train": train_split, "valid": valid_split}} | ||||
|  | ||||
|     info = {"archs": [x.tostr() for x in archs], "total": total_arch, "max_node": max_node, "splits": splits} | ||||
|     info = { | ||||
|         "archs": [x.tostr() for x in archs], | ||||
|         "total": total_arch, | ||||
|         "max_node": max_node, | ||||
|         "splits": splits, | ||||
|     } | ||||
|  | ||||
|     save_dir = Path(save_dir) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
| @@ -400,7 +530,11 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
| def traverse_net(max_node): | ||||
|     aa_nas_bench_ss = get_search_spaces("cell", "nats-bench") | ||||
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|     print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2))) | ||||
|     print( | ||||
|         "There are {:} archs vs {:}.".format( | ||||
|             len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     random.seed(88)  # please do not change this line for reproducibility | ||||
|     random.shuffle(archs) | ||||
| @@ -409,10 +543,12 @@ def traverse_net(max_node): | ||||
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | ||||
|     ), "please check the 0-th architecture : {:}".format(archs[0]) | ||||
|     assert ( | ||||
|         archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|         archs[9].tostr() | ||||
|         == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 9-th architecture : {:}".format(archs[9]) | ||||
|     assert ( | ||||
|         archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|         archs[123].tostr() | ||||
|         == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 123-th architecture : {:}".format(archs[123]) | ||||
|     return [x.tostr() for x in archs] | ||||
|  | ||||
| @@ -439,32 +575,62 @@ def filter_indexes(xlist, mode, save_dir, seeds): | ||||
| if __name__ == "__main__": | ||||
|     # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NATS-Bench (topology search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|         description="NATS-Bench (topology search space)", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, required=True, help="The script mode.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", type=str, default="output/NATS-Bench-topology", help="Folder to save checkpoints and log." | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="output/NATS-Bench-topology", | ||||
|         help="Folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--max_node", type=int, default=4, help="The maximum node in a cell (please do not change it).") | ||||
|     # use for train the model | ||||
|     parser.add_argument("--workers", type=int, default=8, help="number of data loading workers (default: 2)") | ||||
|     parser.add_argument("--srange", type=str, required=True, help="The range of models to be evaluated") | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument("--xpaths", type=str, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--splits", type=int, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument( | ||||
|         "--hyper", type=str, default="12", choices=["01", "12", "200"], help="The tag for hyper-parameters." | ||||
|         "--max_node", | ||||
|         type=int, | ||||
|         default=4, | ||||
|         help="The maximum node in a cell (please do not change it).", | ||||
|     ) | ||||
|     # use for train the model | ||||
|     parser.add_argument( | ||||
|         "--workers", | ||||
|         type=int, | ||||
|         default=8, | ||||
|         help="number of data loading workers (default: 2)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--srange", type=str, required=True, help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument( | ||||
|         "--xpaths", type=str, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--splits", type=int, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hyper", | ||||
|         type=str, | ||||
|         default="12", | ||||
|         choices=["01", "12", "200"], | ||||
|         help="The tag for hyper-parameters.", | ||||
|     ) | ||||
|  | ||||
|     parser.add_argument("--seeds", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument("--channel", type=int, default=16, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.") | ||||
|     parser.add_argument( | ||||
|         "--seeds", type=int, nargs="+", help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--channel", type=int, default=16, help="The number of channels." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--num_cells", type=int, default=5, help="The number of cells in one stage." | ||||
|     ) | ||||
|     parser.add_argument("--check_N", type=int, default=15625, help="For safety.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith("specific-"), "invalid mode : {:}".format( | ||||
|         args.mode | ||||
|     ) | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith( | ||||
|         "specific-" | ||||
|     ), "invalid mode : {:}".format(args.mode) | ||||
|  | ||||
|     if args.mode == "meta": | ||||
|         generate_meta_info(args.save_dir, args.max_node) | ||||
| @@ -485,7 +651,9 @@ if __name__ == "__main__": | ||||
|     else: | ||||
|         nets = traverse_net(args.max_node) | ||||
|         if len(nets) != args.check_N: | ||||
|             raise ValueError("Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)) | ||||
|             raise ValueError( | ||||
|                 "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) | ||||
|             ) | ||||
|         opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper) | ||||
|         if not os.path.isfile(opt_config): | ||||
|             raise ValueError("{:} is not a file.".format(opt_config)) | ||||
| @@ -496,12 +664,16 @@ if __name__ == "__main__": | ||||
|             raise ValueError("invalid length of seeds args: {:}".format(args.seeds)) | ||||
|         if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): | ||||
|             raise ValueError( | ||||
|                 "invalid infos : {:} vs {:} vs {:}".format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|                 "invalid infos : {:} vs {:} vs {:}".format( | ||||
|                     len(args.datasets), len(args.xpaths), len(args.splits) | ||||
|                 ) | ||||
|             ) | ||||
|         if args.workers <= 0: | ||||
|             raise ValueError("invalid number of workers : {:}".format(args.workers)) | ||||
|  | ||||
|         target_indexes = filter_indexes(to_evaluate_indexes, args.mode, save_dir, args.seeds) | ||||
|         target_indexes = filter_indexes( | ||||
|             to_evaluate_indexes, args.mode, save_dir, args.seeds | ||||
|         ) | ||||
|  | ||||
|         assert torch.cuda.is_available(), "CUDA is not available." | ||||
|         torch.backends.cudnn.enabled = True | ||||
| @@ -519,5 +691,9 @@ if __name__ == "__main__": | ||||
|             opt_config, | ||||
|             target_indexes, | ||||
|             args.mode == "cover", | ||||
|             {"name": "infer.tiny", "channel": args.channel, "num_cells": args.num_cells}, | ||||
|             { | ||||
|                 "name": "infer.tiny", | ||||
|                 "channel": args.channel, | ||||
|                 "num_cells": args.num_cells, | ||||
|             }, | ||||
|         ) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user