update for NAS-Bench-102
This commit is contained in:
		
							
								
								
									
										3
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -112,3 +112,6 @@ logs | ||||
| a.pth | ||||
| cal-merge*.sh | ||||
| GPU-*.sh | ||||
| cal.sh | ||||
| aaa | ||||
| cx.sh | ||||
|   | ||||
							
								
								
									
										156
									
								
								NAS-Bench-102.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										156
									
								
								NAS-Bench-102.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,156 @@ | ||||
| # NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search | ||||
|  | ||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||
| The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||
| Each edge here is associated with an operation selected from a predefined operation set. | ||||
| For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. | ||||
|  | ||||
| In this Markdown file, we provide: | ||||
| - Detailed instruction to reproduce NAS-Bench-102. | ||||
| - 10 NAS algorithms evaluated in our paper. | ||||
|  | ||||
| Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`. | ||||
|  | ||||
| ## How to Use NAS-Bench-102 | ||||
|  | ||||
| 1. Creating an API instance from a file: | ||||
| ``` | ||||
| from nas_102_api import NASBench102API | ||||
| api = NASBench102API('$path_to_meta_nas_bench_file') | ||||
| api = NASBench102API('NAS-Bench-102-v1_0.pth') | ||||
| ``` | ||||
|  | ||||
| 2. Show the number of architectures `len(api)` and each architecture `api[i]`: | ||||
| ``` | ||||
| num = len(api) | ||||
| for i, arch_str in enumerate(api): | ||||
|   print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str)) | ||||
| ``` | ||||
|  | ||||
| 3. Show the results of all trials for a single architecture: | ||||
| ``` | ||||
| # show all information for a specific architecture | ||||
| api.show(1) | ||||
| api.show(2) | ||||
|  | ||||
| # show the mean loss and accuracy of an architecture | ||||
| info = api.query_meta_info_by_index(1) | ||||
| loss, accuracy = info.get_metrics('cifar10', 'train') | ||||
| flops, params, latency = info.get_comput_costs('cifar100') | ||||
|  | ||||
| # get the detailed information | ||||
| results = api.query_by_index(1, 'cifar100') | ||||
| print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1])) | ||||
| print ('Latency : {:}'.format(results[0].get_latency())) | ||||
| print ('Train Info : {:}'.format(results[0].get_train())) | ||||
| print ('Valid Info : {:}'.format(results[0].get_eval('x-valid'))) | ||||
| print ('Test  Info : {:}'.format(results[0].get_eval('x-test'))) | ||||
| # for the metric after a specific epoch | ||||
| print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10))) | ||||
| ``` | ||||
|  | ||||
| 4. Query the index of an architecture by string | ||||
| ``` | ||||
| index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|') | ||||
| api.show(index) | ||||
| ``` | ||||
|  | ||||
| 5. For other usages, please see `lib/aa_nas_api/api.py` | ||||
|  | ||||
| ### Detailed Instruction | ||||
|  | ||||
| In `nas_102_api`, we define three classes: `NASBench102API`, `ArchResults`, `ResultsCount`. | ||||
|  | ||||
| `ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture): | ||||
| ``` | ||||
| from nas_102_api import ResultsCount | ||||
| xdata  = torch.load('000157-FULL.pth') | ||||
| odata  = xdata['full']['all_results'][('cifar10-valid', 777)] | ||||
| result = ResultsCount.create_from_state_dict( odata ) | ||||
| print(result) # print it | ||||
| print(result.get_train())   # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch] | ||||
| print(result.get_train(11)) # print the training info of the 11-th epoch | ||||
| print(result.get_eval('x-valid'))     # print the final evaluation info on the validation set | ||||
| print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch | ||||
| print(result.get_latency())           # print the evaluation latency [in batch] | ||||
| result.get_net_param()                # the trained parameters of this trial | ||||
| arch_config = result.get_config(CellStructure.str2structure) # create the network with params | ||||
| net_config  = dict2config(arch_config, None) | ||||
| network    = get_cell_based_tiny_net(net_config) | ||||
| network.load_state_dict(result.get_net_param()) | ||||
| ``` | ||||
|  | ||||
| `ArchResults` maintains all information of all trials of an architecture. Please see the following usages: | ||||
| ``` | ||||
| from nas_102_api import ArchResults | ||||
| xdata   = torch.load('000157-FULL.pth') | ||||
| archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with  12 epochs | ||||
| archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs | ||||
|  | ||||
| print(archRes.arch_idx_str())      # print the index of this architecture  | ||||
| print(archRes.get_dataset_names()) # print the supported training data | ||||
| print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid  | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) # print loss/accuracy/time of a randomly selected trial | ||||
| ``` | ||||
|  | ||||
| `NASBench102API` is the topest level api. Please see the following usages: | ||||
| ``` | ||||
| from nas_102_api import NASBench102API as API | ||||
| api = API('NAS-Bench-102-v1_0.pth') | ||||
| ``` | ||||
|  | ||||
| ## Instruction to Re-Generate NAS-Bench-102 | ||||
|  | ||||
| 1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell. | ||||
| ``` | ||||
| bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4 | ||||
| ``` | ||||
|  | ||||
| 2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script`, which is automatically generated by step-1). | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0     0   389 -1 '777 888 999' | ||||
| ``` | ||||
| This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999). | ||||
|  | ||||
| |     Dataset     |     Train     |      Eval    | | ||||
| |:---------------:|:-------------:|:------------:| | ||||
| | CIFAR-10        | train         | valid / test | | ||||
| | CIFAR-10        | train + valid | test         | | ||||
| | CIFAR-100       | train         | valid / test | | ||||
| | ImageNet-16-120 | train         | valid / test | | ||||
|  | ||||
| 3. calculate the latency, merge the results of all architectures, and simplify the results. | ||||
| (see commands in `output/NAS-BENCH-102-4/meta-node-4.cal-script.txt` which is automatically generated by step-1). | ||||
| ``` | ||||
| OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5 | ||||
| ``` | ||||
|  | ||||
| 4. merge all results into a single file for NAS-Bench-102-API. | ||||
| ``` | ||||
| OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge | ||||
| ``` | ||||
| This command will generate a single file `output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-102. | ||||
| This generated file will serve as the input for our NAS-Bench-102 API. | ||||
|  | ||||
| [option] train a single architecture on a single GPU. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 | ||||
| ``` | ||||
|  | ||||
| ## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102 | ||||
|  | ||||
| We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102. | ||||
| If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly. | ||||
|  | ||||
| - [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1` | ||||
| - [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1` | ||||
| - [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 -1` | ||||
| - [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh     cifar10 -1` | ||||
| - [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh     cifar10 -1` | ||||
| - [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1` | ||||
| - [7] `bash ./scripts-search/algos/R-EA.sh -1` | ||||
| - [8] `bash ./scripts-search/algos/Random.sh -1` | ||||
| - [9] `bash ./scripts-search/algos/REINFORCE.sh -1` | ||||
| - [10] `bash ./scripts-search/algos/BOHB.sh -1` | ||||
							
								
								
									
										38
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										38
									
								
								README.md
									
									
									
									
									
								
							| @@ -6,7 +6,8 @@ More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesom | ||||
| - Network Pruning via Transformable Architecture Search, NeurIPS 2019 | ||||
| - One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 | ||||
| - Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 | ||||
| - 10 NAS algorithms for the neural topology in `exps/algos` | ||||
| - NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 | ||||
| - 10 NAS algorithms for the neural topology in `exps/algos` (see [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md) for more details) | ||||
| - Several typical classification models, e.g., ResNet and DenseNet (see [BASELINE.md](https://github.com/D-X-Y/NAS-Projects/blob/master/BASELINE.md)) | ||||
|  | ||||
|  | ||||
| @@ -27,6 +28,10 @@ flop, param  = get_model_infos(net, (1,3,32,32)) | ||||
| 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
|  | ||||
| ## NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search | ||||
|  | ||||
| We build a new benchmark for neural architecture search, please see more details in [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md). | ||||
|  | ||||
| ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||
| In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | ||||
| You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html). | ||||
| @@ -42,31 +47,33 @@ You could see the highlight of our Transformable Architecture Search (TAS) at ou | ||||
| Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | ||||
| If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`. | ||||
|  | ||||
| Search the depth configuration of ResNet: | ||||
| args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed. | ||||
|  | ||||
| #### Search for the depth configuration of ResNet: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1 | ||||
| ``` | ||||
|  | ||||
| Search the width configuration of ResNet: | ||||
| #### Search for the width configuration of ResNet: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1 | ||||
| ``` | ||||
|  | ||||
| Search for both depth and width configuration of ResNet: | ||||
| #### Search for both depth and width configuration of ResNet: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56  CIFARX 0.47 -1 | ||||
| ``` | ||||
|  | ||||
| args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed. | ||||
|  | ||||
| ### Model Configuration | ||||
| The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019). | ||||
| #### Training the searched shape config from TAS | ||||
| If you want to directly train a model with searched configuration of TAS, try these: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10  C010-ResNet32 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1 | ||||
| ``` | ||||
|  | ||||
| ### Model Configuration | ||||
| The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019). | ||||
|  | ||||
|  | ||||
| ## [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | ||||
|  | ||||
| @@ -103,6 +110,7 @@ The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Proje | ||||
|  | ||||
| ### Usage | ||||
|  | ||||
| #### Reproducing the results of our searched architecture in GDAS | ||||
| Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  GDAS_V1 96 -1 | ||||
| @@ -110,6 +118,7 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | ||||
| ``` | ||||
|  | ||||
| #### Searching on a small search space (NAS-Bench-102) | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| @@ -121,11 +130,24 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| #### Training the searched architecture | ||||
| To train the searched architecture found by the above scripts, please use the following codes: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 | ||||
| ``` | ||||
| `|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure. | ||||
|  | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| If you find that this project helps your research, please consider citing some of the following papers: | ||||
| ``` | ||||
| @inproceedings{dong2020nasbench102, | ||||
|   title     = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   year      = {2020} | ||||
| } | ||||
| @inproceedings{dong2019tas, | ||||
|   title     = {Network Pruning via Transformable Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   | ||||
| @@ -10,7 +10,36 @@ from models       import get_cell_based_tiny_net | ||||
|  | ||||
|  | ||||
|  | ||||
| __all__ = ['evaluate_for_seed'] | ||||
| __all__ = ['evaluate_for_seed', 'pure_evaluate'] | ||||
|  | ||||
|  | ||||
|  | ||||
| def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | ||||
|   data_time, batch_time, batch = AverageMeter(), AverageMeter(), None | ||||
|   losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   latencies = [] | ||||
|   network.eval() | ||||
|   with torch.no_grad(): | ||||
|     end = time.time() | ||||
|     for i, (inputs, targets) in enumerate(xloader): | ||||
|       targets = targets.cuda(non_blocking=True) | ||||
|       inputs  = inputs.cuda(non_blocking=True) | ||||
|       data_time.update(time.time() - end) | ||||
|       # forward | ||||
|       features, logits = network(inputs) | ||||
|       loss             = criterion(logits, targets) | ||||
|       batch_time.update(time.time() - end) | ||||
|       if batch is None or batch == inputs.size(0): | ||||
|         batch = inputs.size(0) | ||||
|         latencies.append( batch_time.val - data_time.val ) | ||||
|       # record loss and accuracy | ||||
|       prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|       losses.update(loss.item(),  inputs.size(0)) | ||||
|       top1.update  (prec1.item(), inputs.size(0)) | ||||
|       top5.update  (prec5.item(), inputs.size(0)) | ||||
|       end = time.time() | ||||
|   if len(latencies) > 2: latencies = latencies[1:] | ||||
|   return losses.avg, top1.avg, top5.avg, latencies | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,4 +1,6 @@ | ||||
| ################################################## | ||||
| # NAS-Bench-102 ################################## | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, torch, random, argparse | ||||
| @@ -265,13 +267,14 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('{:} python exps/AA-NAS-statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|       cfile.write('{:} python exps/NAS-Bench-102/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|   print ('save the post-processing script into {:}'.format(script_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   #parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,                   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,                   help='The maximum node in a cell.') | ||||
|   | ||||
							
								
								
									
										295
									
								
								exps/NAS-Bench-102/statistics.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										295
									
								
								exps/NAS-Bench-102/statistics.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,295 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| # NAS-Bench-102 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_102_api  import ArchResults, ResultsCount | ||||
| from functions    import pure_evaluate | ||||
|  | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): | ||||
|   xresult     = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \ | ||||
|                                results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|  | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None) | ||||
|   network = get_cell_based_tiny_net(net_config) | ||||
|   network.load_state_dict(xresult.get_net_param()) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|    | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     for dataset in datasets: | ||||
|       assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path) | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|   return information | ||||
|  | ||||
|  | ||||
|  | ||||
| def GET_DataLoaders(workers): | ||||
|  | ||||
|   torch.set_num_threads(workers) | ||||
|  | ||||
|   root_dir  = (Path(__file__).parent / '..' / '..').resolve() | ||||
|   torch_dir = Path(os.environ['TORCH_HOME']) | ||||
|   # cifar | ||||
|   cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config' | ||||
|   cifar_config = load_config(cifar_config_path, None, None) | ||||
|   print ('{:} Create data-loader for all datasets'.format(time_string())) | ||||
|   print ('-'*200) | ||||
|   TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num)) | ||||
|   cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None) | ||||
|   assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14] | ||||
|   temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|   temp_dataset.transform = VALID_CIFAR10.transform | ||||
|   # data loader | ||||
|   trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|   train_cifar10_loader    = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True) | ||||
|   valid_cifar10_loader    = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar10_loader    = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-10  : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('-'*200) | ||||
|   # CIFAR-100 | ||||
|   TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num)) | ||||
|   cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None) | ||||
|   assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24] | ||||
|   train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-100  : train-loader has {:3d} batch'.format(len(train_cifar100_loader))) | ||||
|   print ('CIFAR-100  : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader))) | ||||
|   print ('CIFAR-100  : test--loader has {:3d} batch'.format(len(test__cifar100_loader))) | ||||
|   print ('-'*200) | ||||
|  | ||||
|   imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|   imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|   TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1) | ||||
|   print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num)) | ||||
|   imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None) | ||||
|   assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20] | ||||
|   train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size)) | ||||
|  | ||||
|   # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|   loaders = {'cifar10@trainval': trainval_cifar10_loader, | ||||
|              'cifar10@train'   : train_cifar10_loader, | ||||
|              'cifar10@valid'   : valid_cifar10_loader, | ||||
|              'cifar10@test'    : test__cifar10_loader, | ||||
|              'cifar100@train'  : train_cifar100_loader, | ||||
|              'cifar100@valid'  : valid_cifar100_loader, | ||||
|              'cifar100@test'   : test__cifar100_loader, | ||||
|              'ImageNet16-120@train': train_imagenet_loader, | ||||
|              'ImageNet16-120@valid': valid_imagenet_loader, | ||||
|              'ImageNet16-120@test' : test__imagenet_loader} | ||||
|   return loaders | ||||
|  | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] # a list of architecture strings | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs)) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key)) | ||||
|  | ||||
|   dataloader_dict = GET_DataLoaders( 6 ) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   to_save_allarc = save_dir / 'simplifies' / 'architectures' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir) | ||||
|   arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|   evaluated_indexes    = set() | ||||
|   target_directory     = save_dir / target_dir | ||||
|   target_less_dir      = save_dir / '{:}-LESS'.format(target_dir) | ||||
|   arch_indexes         = subdir2archs[ target_directory ] | ||||
|   num_seeds            = defaultdict(lambda: 0) | ||||
|   end_time             = time.time() | ||||
|   arch_time            = AverageMeter() | ||||
|   for idx, arch_index in enumerate(arch_indexes): | ||||
|     checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     ckps_less   = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     # create the arch info for each architecture | ||||
|     try: | ||||
|       arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict) | ||||
|       arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict) | ||||
|       num_seeds[ len(checkpoints) ] += 1 | ||||
|     except: | ||||
|       print('Loading {:} failed, : {:}'.format(arch_index, checkpoints)) | ||||
|       continue | ||||
|     assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index) | ||||
|     assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|     arch_info = {'full': arch_info_full, 'less': arch_info_less} | ||||
|     evaluated_indexes.add( int(arch_index) ) | ||||
|     arch2infos[int(arch_index)] = arch_info | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index)) | ||||
|     arch_info['full'].clear_params() | ||||
|     arch_info['less'].clear_params() | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index)) | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) ) | ||||
|     print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time)) | ||||
|   # measure time | ||||
|   xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ] | ||||
|   print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs)) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'basestr'    : basestr, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}.pth'.format(target_dir) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) ) | ||||
|     print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files))) | ||||
|    | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|     ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name) | ||||
|     if ckp_path.exists(): | ||||
|       sub_ckps = torch.load(ckp_path, map_location='cpu') | ||||
|       assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr | ||||
|       xarch2infos = sub_ckps['arch2infos'] | ||||
|       xevalindexs = sub_ckps['evaluated_indexes'] | ||||
|       for eval_index in xevalindexs: | ||||
|         assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|         #arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|         arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(), | ||||
|                                   'less': xarch2infos[eval_index]['less'].state_dict()} | ||||
|         evaluated_indexes.add( eval_index ) | ||||
|       print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs))) | ||||
|     else: | ||||
|       raise ValueError('Can not find {:}'.format(ckp_path)) | ||||
|       #print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|   evaluated_indexes = sorted( list( evaluated_indexes ) ) | ||||
|   print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes))) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'         ,  type=str, choices=['cal', 'merge'],            help='The running mode for this script.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-102-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--target_dir'   ,  type=str,                                      help='The target directory.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path( args.base_save_dir ) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir)) | ||||
|   basestr   = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|    | ||||
|   if args.mode == 'cal': | ||||
|     simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|   elif args.mode == 'merge': | ||||
|     merge_all(save_dir, meta_path, basestr) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(args.mode)) | ||||
| @@ -17,7 +17,7 @@ from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
| from R_EA import train_and_eval | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018 | ||||
| @@ -112,7 +112,7 @@ def main(xargs, nas_bench): | ||||
|   num_workers = 1 | ||||
|  | ||||
|   #nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} Create AA-NAS-BENCH-API DONE'.format(time_string())) | ||||
|   #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string())) | ||||
|   workers = [] | ||||
|   for i in range(num_workers): | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i) | ||||
| @@ -179,7 +179,7 @@ if __name__ == '__main__': | ||||
|     nas_bench = None | ||||
|   else: | ||||
|     print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset)) | ||||
|     nas_bench = AANASBenchAPI(args.arch_nas_dataset) | ||||
|     nas_bench = API(args.arch_nas_dataset) | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_indexes, num = None, [], 500 | ||||
|     for i in range(num): | ||||
|   | ||||
| @@ -15,7 +15,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_search_spaces | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from R_EA         import train_and_eval, random_architecture_func | ||||
|  | ||||
|  | ||||
| @@ -92,7 +92,7 @@ if __name__ == '__main__': | ||||
|     nas_bench = None | ||||
|   else: | ||||
|     print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset)) | ||||
|     nas_bench = AANASBenchAPI(args.arch_nas_dataset) | ||||
|     nas_bench = API(args.arch_nas_dataset) | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_indexes, num = None, [], 500 | ||||
|     for i in range(num): | ||||
|   | ||||
| @@ -16,7 +16,7 @@ from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
|  | ||||
|  | ||||
| @@ -230,7 +230,7 @@ if __name__ == '__main__': | ||||
|     nas_bench = None | ||||
|   else: | ||||
|     print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset)) | ||||
|     nas_bench = AANASBenchAPI(args.arch_nas_dataset) | ||||
|     nas_bench = API(args.arch_nas_dataset) | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_indexes, num = None, [], 500 | ||||
|     for i in range(num): | ||||
|   | ||||
| @@ -17,7 +17,7 @@ from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from nas_102_api  import NASBench102API | ||||
| from models       import CellStructure, get_search_spaces | ||||
| from R_EA import train_and_eval | ||||
|  | ||||
|   | ||||
							
								
								
									
										27
									
								
								exps/vis/test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								exps/vis/test.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,27 @@ | ||||
| # python ./exps/vis/test.py | ||||
| import os, sys | ||||
| from pathlib import Path | ||||
| import torch | ||||
| import numpy as np | ||||
| from collections import OrderedDict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
|  | ||||
| def test_nas_api(): | ||||
|   from nas_102_api import ArchResults | ||||
|   xdata   = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-102-4/simplifies/architectures/000157-FULL.pth') | ||||
|   for key in ['full', 'less']: | ||||
|     print ('\n------------------------- {:} -------------------------'.format(key)) | ||||
|     archRes = ArchResults.create_from_state_dict(xdata[key]) | ||||
|     print(archRes) | ||||
|     print(archRes.arch_idx_str()) | ||||
|     print(archRes.get_dataset_names()) | ||||
|     print(archRes.get_comput_costs('cifar10-valid')) | ||||
|     # get the metrics | ||||
|     print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) | ||||
|     print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) | ||||
|     print(archRes.query('cifar10-valid', 777)) | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   test_nas_api() | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .api import AANASBenchAPI | ||||
| from .api import NASBench102API | ||||
| from .api import ArchResults, ResultsCount | ||||
| @@ -2,7 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, copy, random, torch, numpy as np | ||||
| from collections import OrderedDict | ||||
| from collections import OrderedDict, defaultdict | ||||
| 
 | ||||
| 
 | ||||
| def print_information(information, extra_info=None, show=False): | ||||
| @@ -30,16 +30,17 @@ def print_information(information, extra_info=None, show=False): | ||||
|   return strings | ||||
| 
 | ||||
| 
 | ||||
| class AANASBenchAPI(object): | ||||
| class NASBench102API(object): | ||||
| 
 | ||||
|   def __init__(self, file_path_or_dict, verbose=True): | ||||
|     if isinstance(file_path_or_dict, str): | ||||
|       if verbose: print('try to create AA-NAS-Bench api from {:}'.format(file_path_or_dict)) | ||||
|       if verbose: print('try to create NAS-Bench-102 api from {:}'.format(file_path_or_dict)) | ||||
|       assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) | ||||
|       file_path_or_dict = torch.load(file_path_or_dict) | ||||
|     else: | ||||
|       file_path_or_dict = copy.deepcopy( file_path_or_dict ) | ||||
|     assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) | ||||
|     import pdb; pdb.set_trace() # we will update this api soon | ||||
|     keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') | ||||
|     for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) | ||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||
| @@ -144,27 +145,46 @@ class ArchResults(object): | ||||
|   def get_comput_costs(self, dataset): | ||||
|     x_seeds = self.dataset_seed[dataset] | ||||
|     results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] | ||||
|     flops   = [result.flop for result in results] | ||||
|     params  = [result.params for result in results] | ||||
| 
 | ||||
|     flops      = [result.flop for result in results] | ||||
|     params     = [result.params for result in results] | ||||
|     lantencies = [result.get_latency() for result in results] | ||||
|     return np.mean(flops), np.mean(params), np.mean(lantencies) | ||||
|     lantencies = [x for x in lantencies if x > 0] | ||||
|     mean_latency = np.mean(lantencies) if len(lantencies) > 0 else None | ||||
|     time_infos = defaultdict(list) | ||||
|     for result in results: | ||||
|       time_info = result.get_times() | ||||
|       for key, value in time_info.items(): time_infos[key].append( value ) | ||||
|       | ||||
|     info = {'flops'  : np.mean(flops), | ||||
|             'params' : np.mean(params), | ||||
|             'latency': mean_latency} | ||||
|     for key, value in time_infos.items(): | ||||
|       if len(value) > 0 and value[0] is not None: | ||||
|         info[key] = np.mean(value) | ||||
|       else: info[key] = None | ||||
|     return info | ||||
| 
 | ||||
|   def get_metrics(self, dataset, setname, iepoch=None, is_random=False): | ||||
|     x_seeds = self.dataset_seed[dataset] | ||||
|     results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] | ||||
|     loss, accuracy = [], [] | ||||
|     infos   = defaultdict(list) | ||||
|     for result in results: | ||||
|       if setname == 'train': | ||||
|         info = result.get_train(iepoch) | ||||
|       else: | ||||
|         info = result.get_eval(setname, iepoch) | ||||
|       loss.append( info['loss'] ) | ||||
|       accuracy.append( info['accuracy'] ) | ||||
|       for key, value in info.items(): infos[key].append( value ) | ||||
|     return_info = dict() | ||||
|     if is_random: | ||||
|       index = random.randint(0, len(loss)-1) | ||||
|       return loss[index], accuracy[index] | ||||
|       index = random.randint(0, len(results)-1) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     else: | ||||
|       return float(np.mean(loss)), float(np.mean(accuracy)) | ||||
|       for key, value in infos.items(): | ||||
|         if len(value) > 0 and value[0] is not None: | ||||
|           return_info[key] = np.mean(value) | ||||
|         else: return_info[key] = None | ||||
|     return return_info | ||||
| 
 | ||||
|   def show(self, is_print=False): | ||||
|     return print_information(self, None, is_print) | ||||
| @@ -245,8 +265,10 @@ class ResultsCount(object): | ||||
|   def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency): | ||||
|     self.name           = name | ||||
|     self.net_state_dict = state_dict | ||||
|     self.train_accs   = copy.deepcopy(train_accs) | ||||
|     self.train_acc1es = copy.deepcopy(train_accs) | ||||
|     self.train_acc5es = None | ||||
|     self.train_losses = copy.deepcopy(train_losses) | ||||
|     self.train_times  = None | ||||
|     self.arch_config  = copy.deepcopy(arch_config) | ||||
|     self.params     = params | ||||
|     self.flop       = flop | ||||
| @@ -256,44 +278,97 @@ class ResultsCount(object): | ||||
|     # evaluation results | ||||
|     self.reset_eval() | ||||
| 
 | ||||
|   def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times): | ||||
|     self.train_acc1es = train_acc1es | ||||
|     self.train_acc5es = train_acc5es | ||||
|     self.train_losses = train_losses | ||||
|     self.train_times  = train_times | ||||
| 
 | ||||
|   def reset_eval(self): | ||||
|     self.eval_names  = [] | ||||
|     self.eval_accs   = {} | ||||
|     self.eval_acc1es = {} | ||||
|     self.eval_times  = {} | ||||
|     self.eval_losses = {} | ||||
| 
 | ||||
|   def update_latency(self, latency): | ||||
|     self.latency = copy.deepcopy( latency ) | ||||
| 
 | ||||
|   def update_eval(self, accs, losses, times): # old version | ||||
|     data_names = set([x.split('@')[0] for x in accs.keys()]) | ||||
|     for data_name in data_names: | ||||
|       assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name) | ||||
|       self.eval_names.append( data_name ) | ||||
|       for iepoch in range(self.epochs): | ||||
|         xkey = '{:}@{:}'.format(data_name, iepoch) | ||||
|         self.eval_acc1es[ xkey ] = accs[ xkey ] | ||||
|         self.eval_losses[ xkey ] = losses[ xkey ] | ||||
|         self.eval_times [ xkey ] = times[ xkey ] | ||||
| 
 | ||||
|   def update_OLD_eval(self, name, accs, losses): # old version | ||||
|     assert name not in self.eval_names, '{:} has already added'.format(name) | ||||
|     self.eval_names.append( name ) | ||||
|     for iepoch in range(self.epochs): | ||||
|       if iepoch in accs: | ||||
|         self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch] | ||||
|         self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch] | ||||
| 
 | ||||
|   def __repr__(self): | ||||
|     num_eval = len(self.eval_names) | ||||
|     set_name = '[' + ', '.join(self.eval_names) + ']' | ||||
|     return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name)) | ||||
| 
 | ||||
|   def get_latency(self): | ||||
|     if self.latency is None: return -1 | ||||
|     else: return sum(self.latency) / len(self.latency) | ||||
| 
 | ||||
|   def update_eval(self, name, accs, losses): | ||||
|     assert name not in self.eval_names, '{:} has already added'.format(name) | ||||
|     self.eval_names.append( name ) | ||||
|     self.eval_accs[name] = copy.deepcopy( accs ) | ||||
|     self.eval_losses[name] = copy.deepcopy( losses ) | ||||
|   def get_times(self): | ||||
|     if self.train_times is not None and isinstance(self.train_times, dict): | ||||
|       train_times = list( self.train_times.values() ) | ||||
|       time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)} | ||||
|       for name in self.eval_names: | ||||
|         xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)] | ||||
|         time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes) | ||||
|         time_info['T-{:}@total'.format(name)] = np.sum(xtimes) | ||||
|     else: | ||||
|       time_info = {'T-train@epoch':                 None, 'T-train@total':               None } | ||||
|       for name in self.eval_names: | ||||
|         time_info['T-{:}@epoch'.format(name)] = None | ||||
|         time_info['T-{:}@total'.format(name)] = None | ||||
|     return time_info | ||||
| 
 | ||||
|   def __repr__(self): | ||||
|     num_eval = len(self.eval_names) | ||||
|     return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets)'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval)) | ||||
| 
 | ||||
|   def valid_evaluation_set(self): | ||||
|   def get_eval_set(self): | ||||
|     return self.eval_names | ||||
| 
 | ||||
|   def get_train(self, iepoch=None): | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     return {'loss': self.train_losses[iepoch], 'accuracy': self.train_accs[iepoch]} | ||||
|     if self.train_times is not None: xtime = self.train_times[iepoch] | ||||
|     else                           : xtime = None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.train_losses[iepoch], | ||||
|             'accuracy': self.train_acc1es[iepoch], | ||||
|             'time'    : xtime} | ||||
| 
 | ||||
|   def get_eval(self, name, iepoch=None): | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     return {'loss': self.eval_losses[name][iepoch], 'accuracy': self.eval_accs[name][iepoch]} | ||||
|     if isinstance(self.eval_times,dict) and len(self.eval_times) > 0: | ||||
|       xtime = self.eval_times['{:}@{:}'.format(name,iepoch)] | ||||
|     else: xtime = None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.eval_losses['{:}@{:}'.format(name,iepoch)], | ||||
|             'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)], | ||||
|             'time'    : xtime} | ||||
| 
 | ||||
|   def get_net_param(self): | ||||
|     return self.net_state_dict | ||||
| 
 | ||||
|   def get_config(self, str2structure): | ||||
|     #return copy.deepcopy(self.arch_config) | ||||
|     return {'name': 'infer.tiny', 'C': self.arch_config['channel'], \ | ||||
|             'N'   : self.arch_config['num_cells'], \ | ||||
|             'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']} | ||||
| 
 | ||||
|   def state_dict(self): | ||||
|     _state_dict = {key: value for key, value in self.__dict__.items()} | ||||
|     return _state_dict | ||||
		Reference in New Issue
	
	Block a user