Update weight watcher codes
This commit is contained in:
		| @@ -46,7 +46,8 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). | |||||||
| ``` | ``` | ||||||
| from nas_201_api import NASBench201API as API | from nas_201_api import NASBench201API as API | ||||||
| api = API('$path_to_meta_nas_bench_file') | api = API('$path_to_meta_nas_bench_file') | ||||||
| api = API('NAS-Bench-201-v1_1-096897.pth') | # Create an API without the verbose log | ||||||
|  | api = API('NAS-Bench-201-v1_1-096897.pth', verbose=False) | ||||||
| # The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth') | # The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth') | ||||||
| api = API(None) | api = API(None) | ||||||
| ``` | ``` | ||||||
|   | |||||||
| @@ -90,9 +90,9 @@ def visualize_sss_info(api, dataset, vis_save_dir): | |||||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) |     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] |     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||||
|     for index in range(len(api)): |     for index in range(len(api)): | ||||||
|       info = api.get_cost_info(index, dataset) |       cost_info = api.get_cost_info(index, dataset, hp='90') | ||||||
|       params.append(info['params']) |       params.append(cost_info['params']) | ||||||
|       flops.append(info['flops']) |       flops.append(cost_info['flops']) | ||||||
|       # accuracy |       # accuracy | ||||||
|       info = api.get_more_info(index, dataset, hp='90', is_random=False) |       info = api.get_more_info(index, dataset, hp='90', is_random=False) | ||||||
|       train_accs.append(info['train-accuracy']) |       train_accs.append(info['train-accuracy']) | ||||||
| @@ -178,9 +178,9 @@ def visualize_tss_info(api, dataset, vis_save_dir): | |||||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) |     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] |     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||||
|     for index in range(len(api)): |     for index in range(len(api)): | ||||||
|       info = api.get_cost_info(index, dataset) |       cost_info = api.get_cost_info(index, dataset, hp='12') | ||||||
|       params.append(info['params']) |       params.append(cost_info['params']) | ||||||
|       flops.append(info['flops']) |       flops.append(cost_info['flops']) | ||||||
|       # accuracy |       # accuracy | ||||||
|       info = api.get_more_info(index, dataset, hp='200', is_random=False) |       info = api.get_more_info(index, dataset, hp='200', is_random=False) | ||||||
|       train_accs.append(info['train-accuracy']) |       train_accs.append(info['train-accuracy']) | ||||||
| @@ -190,6 +190,7 @@ def visualize_tss_info(api, dataset, vis_save_dir): | |||||||
|         valid_accs.append(info['valid-accuracy']) |         valid_accs.append(info['valid-accuracy']) | ||||||
|       else: |       else: | ||||||
|         valid_accs.append(info['valid-accuracy']) |         valid_accs.append(info['valid-accuracy']) | ||||||
|  |       print('') | ||||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} |     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||||
|     torch.save(info, cache_file_path) |     torch.save(info, cache_file_path) | ||||||
|   else: |   else: | ||||||
|   | |||||||
| @@ -1,113 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # |  | ||||||
| ############################################################################################### |  | ||||||
| # Before run these commands, the files must be properly put. |  | ||||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 |  | ||||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 |  | ||||||
| # bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 |  | ||||||
| ############################################################################################### |  | ||||||
| import os, gc, sys, math, argparse, psutil |  | ||||||
| import numpy as np |  | ||||||
| import torch |  | ||||||
| from pathlib import Path |  | ||||||
| from collections import OrderedDict |  | ||||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() |  | ||||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) |  | ||||||
| from nas_201_api import NASBench201API as API |  | ||||||
| from log_utils import time_string |  | ||||||
| from models import get_cell_based_tiny_net |  | ||||||
| from utils import weight_watcher |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_cor(A, B): |  | ||||||
|   return float(np.corrcoef(A, B)[0,1]) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def tostr(accdict, norms): |  | ||||||
|   xstr = [] |  | ||||||
|   for key, accs in accdict.items(): |  | ||||||
|     cor = get_cor(accs, norms) |  | ||||||
|     xstr.append('{:}: {:.3f}'.format(key, cor)) |  | ||||||
|   return ' '.join(xstr) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def evaluate(api, weight_dir, data: str, use_12epochs_result: bool): |  | ||||||
|   print('\nEvaluate dataset={:}'.format(data)) |  | ||||||
|   norms, process = [], psutil.Process(os.getpid()) |  | ||||||
|   final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) |  | ||||||
|   final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) |  | ||||||
|   for idx in range(len(api)): |  | ||||||
|     # info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) |  | ||||||
|     for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']: |  | ||||||
|       info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False) |  | ||||||
|       if key == 'cifar10-valid': |  | ||||||
|         final_val_accs['cifar10'].append(info['valid-accuracy']) |  | ||||||
|       elif key == 'cifar10': |  | ||||||
|         final_test_accs['cifar10'].append(info['test-accuracy']) |  | ||||||
|       else: |  | ||||||
|         final_test_accs[key].append(info['test-accuracy']) |  | ||||||
|         final_val_accs[key].append(info['valid-accuracy']) |  | ||||||
|     config = api.get_net_config(idx, data) |  | ||||||
|     net = get_cell_based_tiny_net(config) |  | ||||||
|     api.reload(weight_dir, idx) |  | ||||||
|     params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result) |  | ||||||
|     cur_norms = [] |  | ||||||
|     for seed, param in params.items(): |  | ||||||
|       with torch.no_grad(): |  | ||||||
|         net.load_state_dict(param) |  | ||||||
|         _, summary = weight_watcher.analyze(net, alphas=False) |  | ||||||
|         cur_norms.append(-summary['lognorm']) |  | ||||||
|     cur_norm = float(np.mean(cur_norms)) |  | ||||||
|     if math.isnan(cur_norm): |  | ||||||
|       print ('  IGNORE {:} due to nan.'.format(idx)) |  | ||||||
|       continue |  | ||||||
|     norms.append(cur_norm) |  | ||||||
|     api.clear_params(idx, None) |  | ||||||
|     if idx % 200 == 199 or idx + 1 == len(api): |  | ||||||
|       head = '{:05d}/{:05d}'.format(idx, len(api)) |  | ||||||
|       stem_val = tostr(final_val_accs, norms) |  | ||||||
|       stem_test = tostr(final_test_accs, norms) |  | ||||||
|       print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6)) |  | ||||||
|       print('  [Valid] -->>  {:}'.format(stem_val)) |  | ||||||
|       print('  [Test.] -->>  {:}'.format(stem_test)) |  | ||||||
|       gc.collect() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result): |  | ||||||
|   api = API(meta_file) |  | ||||||
|   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] |  | ||||||
|   print(time_string() + ' ' + '='*50) |  | ||||||
|   for data in datasets: |  | ||||||
|     nums = api.statistics(data, True) |  | ||||||
|     total = sum([k*v for k, v in nums.items()]) |  | ||||||
|     print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) |  | ||||||
|   print(time_string() + ' ' + '='*50) |  | ||||||
|   for data in datasets: |  | ||||||
|     nums = api.statistics(data, False) |  | ||||||
|     total = sum([k*v for k, v in nums.items()]) |  | ||||||
|     print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) |  | ||||||
|   print(time_string() + ' ' + '='*50) |  | ||||||
|  |  | ||||||
|   #evaluate(api, weight_dir, 'cifar10-valid', False, True) |  | ||||||
|   evaluate(api, weight_dir, xdata, use_12epochs_result) |  | ||||||
|    |  | ||||||
|   print('{:} finish this test.'.format(time_string())) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': |  | ||||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") |  | ||||||
|   parser.add_argument('--save_dir',   type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') |  | ||||||
|   parser.add_argument('--base_path',  type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') |  | ||||||
|   parser.add_argument('--dataset'  ,  type=str, default=None, help='.') |  | ||||||
|   parser.add_argument('--use_12'   ,  type=int, default=None, help='.') |  | ||||||
|   args = parser.parse_args() |  | ||||||
|  |  | ||||||
|   save_dir = Path(args.save_dir) |  | ||||||
|   save_dir.mkdir(parents=True, exist_ok=True) |  | ||||||
|   meta_file = Path(args.base_path + '.pth') |  | ||||||
|   weight_dir = Path(args.base_path + '-archive') |  | ||||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) |  | ||||||
|   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) |  | ||||||
|  |  | ||||||
|   main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12)) |  | ||||||
|  |  | ||||||
| @@ -1,20 +0,0 @@ | |||||||
| #  |  | ||||||
| # exps/experimental/test-api.py |  | ||||||
| # |  | ||||||
| import sys, time, random, argparse |  | ||||||
| from copy import deepcopy |  | ||||||
| import torchvision.models as models |  | ||||||
| from pathlib import Path |  | ||||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() |  | ||||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) |  | ||||||
|  |  | ||||||
| from nas_201_api import NASBench201API as API |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(): |  | ||||||
|   api = API(None) |  | ||||||
|   info = api.get_more_info(100, 'cifar100', 199, False, True) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': |  | ||||||
|   main() |  | ||||||
							
								
								
									
										151
									
								
								exps/experimental/test-ww-bench.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										151
									
								
								exps/experimental/test-ww-bench.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,151 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||||
|  | ########################################################################################################################################################### | ||||||
|  | # Before run these commands, the files must be properly put. | ||||||
|  | # | ||||||
|  | # python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 | ||||||
|  | # python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 | ||||||
|  | # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10 | ||||||
|  | # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar10 | ||||||
|  | # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar100 | ||||||
|  | # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset ImageNet16-120 | ||||||
|  | ########################################################################################################################################################### | ||||||
|  | import os, gc, sys, math, argparse, psutil | ||||||
|  | import numpy as np | ||||||
|  | import torch | ||||||
|  | from pathlib import Path | ||||||
|  | from collections import OrderedDict | ||||||
|  | import matplotlib | ||||||
|  | import seaborn as sns | ||||||
|  | matplotlib.use('agg') | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from nas_201_api import NASBench201API, NASBench301API | ||||||
|  | from log_utils import time_string | ||||||
|  | from models import get_cell_based_tiny_net | ||||||
|  | from utils import weight_watcher | ||||||
|  |  | ||||||
|  |  | ||||||
|  | """ | ||||||
|  | def get_cor(A, B): | ||||||
|  |   return float(np.corrcoef(A, B)[0,1]) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def tostr(accdict, norms): | ||||||
|  |   xstr = [] | ||||||
|  |   for key, accs in accdict.items(): | ||||||
|  |     cor = get_cor(accs, norms) | ||||||
|  |     xstr.append('{:}: {:.3f}'.format(key, cor)) | ||||||
|  |   return ' '.join(xstr) | ||||||
|  | """ | ||||||
|  |  | ||||||
|  | def evaluate(api, weight_dir, data: str): | ||||||
|  |   print('\nEvaluate dataset={:}'.format(data)) | ||||||
|  |   process = psutil.Process(os.getpid()) | ||||||
|  |   norms, accuracies = [], [] | ||||||
|  |   ok, total = 0, 5000 | ||||||
|  |   for idx in range(total): | ||||||
|  |     arch_index = api.random() | ||||||
|  |     api.reload(weight_dir, arch_index) | ||||||
|  |     # compute the weight watcher results | ||||||
|  |     config = api.get_net_config(arch_index, data) | ||||||
|  |     net = get_cell_based_tiny_net(config) | ||||||
|  |     meta_info = api.query_meta_info_by_index(arch_index, hp='200' if isinstance(api, NASBench201API) else '90') | ||||||
|  |     params = meta_info.get_net_param(data, 777) | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       net.load_state_dict(params) | ||||||
|  |       _, summary = weight_watcher.analyze(net, alphas=False) | ||||||
|  |       if 'lognorm' not in summary: | ||||||
|  |         api.clear_params(arch_index, None) | ||||||
|  |         del net ; continue | ||||||
|  |         continue | ||||||
|  |       cur_norm = -summary['lognorm'] | ||||||
|  |     api.clear_params(arch_index, None) | ||||||
|  |     if math.isnan(cur_norm): | ||||||
|  |       del net, meta_info | ||||||
|  |       continue | ||||||
|  |     else: | ||||||
|  |       ok += 1 | ||||||
|  |       norms.append(cur_norm) | ||||||
|  |     # query the accuracy | ||||||
|  |     info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=777) | ||||||
|  |     accuracies.append(info['accuracy']) | ||||||
|  |     del net, meta_info | ||||||
|  |     # print the information | ||||||
|  |     if idx % 20 == 0: | ||||||
|  |       gc.collect() | ||||||
|  |       print('{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)'.format(time_string(), ok, idx, total, process.memory_info().rss / 1e6)) | ||||||
|  |   return norms, accuracies | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(search_space, meta_file: str, weight_dir, save_dir, xdata): | ||||||
|  |   API = NASBench201API if search_space == 'tss' else NASBench301API | ||||||
|  |   save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |   api = API(meta_file, verbose=False) | ||||||
|  |   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||||
|  |   print(time_string() + ' ' + '='*50) | ||||||
|  |   for data in datasets: | ||||||
|  |     hps = api.avaliable_hps | ||||||
|  |     for hp in hps: | ||||||
|  |       nums = api.statistics(data, hp=hp) | ||||||
|  |       total = sum([k*v for k, v in nums.items()]) | ||||||
|  |       print('Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).'.format(hp, data, total, nums)) | ||||||
|  |   print(time_string() + ' ' + '='*50) | ||||||
|  |  | ||||||
|  |   norms, accuracies = evaluate(api, weight_dir, xdata) | ||||||
|  |  | ||||||
|  |   indexes = list(range(len(norms))) | ||||||
|  |   norm_indexes = sorted(indexes, key=lambda i: norms[i]) | ||||||
|  |   accy_indexes = sorted(indexes, key=lambda i: accuracies[i]) | ||||||
|  |   labels = [] | ||||||
|  |   for index in norm_indexes: | ||||||
|  |     labels.append(accy_indexes.index(index)) | ||||||
|  |  | ||||||
|  |   dpi, width, height = 200, 1400,  800 | ||||||
|  |   figsize = width / float(dpi), height / float(dpi) | ||||||
|  |   LabelSize, LegendFontsize = 18, 12 | ||||||
|  |   resnet_scale, resnet_alpha = 120, 0.5 | ||||||
|  |  | ||||||
|  |   fig = plt.figure(figsize=figsize) | ||||||
|  |   ax  = fig.add_subplot(111) | ||||||
|  |   plt.xlim(min(indexes), max(indexes)) | ||||||
|  |   plt.ylim(min(indexes), max(indexes)) | ||||||
|  |   # plt.ylabel('y').set_rotation(30) | ||||||
|  |   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical') | ||||||
|  |   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||||
|  |   ax.scatter(indexes, labels , marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||||
|  |   ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||||
|  |   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Test accuracy') | ||||||
|  |   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='Weight watcher') | ||||||
|  |   plt.grid(zorder=0) | ||||||
|  |   ax.set_axisbelow(True) | ||||||
|  |   plt.legend(loc=0, fontsize=LegendFontsize) | ||||||
|  |   ax.set_xlabel('architecture ranking sorted by the test accuracy ', fontsize=LabelSize) | ||||||
|  |   ax.set_ylabel('architecture ranking computed by weight watcher', fontsize=LabelSize) | ||||||
|  |   save_path = (save_dir / '{:}-{:}-test-ww.pdf'.format(search_space, xdata)).resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||||
|  |   save_path = (save_dir / '{:}-{:}-test-ww.png'.format(search_space, xdata)).resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||||
|  |   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||||
|  |    | ||||||
|  |   print('{:} finish this test.'.format(time_string())) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||||
|  |   parser.add_argument('--save_dir',     type=str, default='./output/vis-nas-bench/', help='The base-name of folder to save checkpoints and log.') | ||||||
|  |   parser.add_argument('--search_space', type=str, default=None, choices=['tss', 'sss'], help='The search space.') | ||||||
|  |   parser.add_argument('--base_path',    type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') | ||||||
|  |   parser.add_argument('--dataset'  ,    type=str, default=None, help='.') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |  | ||||||
|  |   save_dir = Path(args.save_dir) | ||||||
|  |   save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |   meta_file = Path(args.base_path + '.pth') | ||||||
|  |   weight_dir = Path(args.base_path + '-archive') | ||||||
|  |   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||||
|  |   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) | ||||||
|  |  | ||||||
|  |   main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset) | ||||||
|  |  | ||||||
| @@ -77,6 +77,7 @@ class NASBench201API(NASBenchMetaAPI): | |||||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) |     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||||
|     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults |     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||||
|     self.arch2infos_dict = OrderedDict() |     self.arch2infos_dict = OrderedDict() | ||||||
|  |     self._avaliable_hps = set(['12', '200']) | ||||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): |     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||||
|       all_info = file_path_or_dict['arch2infos'][xkey] |       all_info = file_path_or_dict['arch2infos'][xkey] | ||||||
|       hp2archres = OrderedDict() |       hp2archres = OrderedDict() | ||||||
|   | |||||||
| @@ -75,11 +75,13 @@ class NASBench301API(NASBenchMetaAPI): | |||||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) |     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||||
|     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults |     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||||
|     self.arch2infos_dict = OrderedDict() |     self.arch2infos_dict = OrderedDict() | ||||||
|  |     self._avaliable_hps = set() | ||||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): |     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||||
|       all_infos = file_path_or_dict['arch2infos'][xkey] |       all_infos = file_path_or_dict['arch2infos'][xkey] | ||||||
|       hp2archres = OrderedDict() |       hp2archres = OrderedDict() | ||||||
|       for hp_key, results in all_infos.items(): |       for hp_key, results in all_infos.items(): | ||||||
|         hp2archres[hp_key] = ArchResults.create_from_state_dict(results) |         hp2archres[hp_key] = ArchResults.create_from_state_dict(results) | ||||||
|  |         self._avaliable_hps.add(hp_key)  # save the avaliable hyper-parameter | ||||||
|       self.arch2infos_dict[xkey] = hp2archres |       self.arch2infos_dict[xkey] = hp2archres | ||||||
|     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) |     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) | ||||||
|     self.archstr2index = {} |     self.archstr2index = {} | ||||||
|   | |||||||
| @@ -57,6 +57,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | |||||||
|   def __repr__(self): |   def __repr__(self): | ||||||
|     return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename)) |     return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename)) | ||||||
|  |  | ||||||
|  |   @property | ||||||
|  |   def avaliable_hps(self): | ||||||
|  |     return list(copy.deepcopy(self._avaliable_hps)) | ||||||
|  |  | ||||||
|   def random(self): |   def random(self): | ||||||
|     """Return a random index of all architectures.""" |     """Return a random index of all architectures.""" | ||||||
|     return random.randint(0, len(self.meta_archs)-1) |     return random.randint(0, len(self.meta_archs)-1) | ||||||
|   | |||||||
| @@ -1,21 +0,0 @@ | |||||||
| #!/bin/bash |  | ||||||
| # bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 |  | ||||||
| echo script name: $0 |  | ||||||
| echo $# arguments |  | ||||||
| if [ "$#" -ne 2 ] ;then |  | ||||||
|   echo "Input illegal number of parameters " $# |  | ||||||
|   echo "Need 2 parameters for dataset and use_12_epoch" |  | ||||||
|   exit 1 |  | ||||||
| fi |  | ||||||
|  |  | ||||||
| if [ "$TORCH_HOME" = "" ]; then |  | ||||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" |  | ||||||
|   exit 1 |  | ||||||
| else |  | ||||||
|   echo "TORCH_HOME : $TORCH_HOME" |  | ||||||
| fi |  | ||||||
|  |  | ||||||
| CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/NAS-Bench-201/test-weights.py \ |  | ||||||
| 	--base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 \ |  | ||||||
| 	--dataset $1 \ |  | ||||||
| 	--use_12 $2 |  | ||||||
		Reference in New Issue
	
	Block a user