Update LFNA
This commit is contained in:
		| @@ -1,239 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
|  | ||||
|  | ||||
| class LFNAmlp: | ||||
|     """A LFNA meta-model that uses the MLP as delta-net.""" | ||||
|  | ||||
|     def __init__(self, obs_dim, hidden_sizes, act_name, criterion): | ||||
|         self.delta_net = super_core.SuperSequential( | ||||
|             super_core.SuperLinear(obs_dim, hidden_sizes[0]), | ||||
|             super_core.super_name2activation[act_name](), | ||||
|             super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), | ||||
|             super_core.super_name2activation[act_name](), | ||||
|             super_core.SuperLinear(hidden_sizes[1], 1), | ||||
|         ) | ||||
|         self.meta_optimizer = torch.optim.Adam( | ||||
|             self.delta_net.parameters(), lr=0.001, amsgrad=True | ||||
|         ) | ||||
|         self.criterion = criterion | ||||
|  | ||||
|     def adapt(self, model, seq_datasets): | ||||
|         delta_inputs = [] | ||||
|         container = model.get_w_container() | ||||
|         for iseq, dataset in enumerate(seq_datasets): | ||||
|             y_hat = model.forward_with_container(dataset.x, container) | ||||
|             loss = self.criterion(y_hat, dataset.y) | ||||
|             gradients = torch.autograd.grad(loss, container.parameters()) | ||||
|             with torch.no_grad(): | ||||
|                 flatten_g = container.flatten(gradients) | ||||
|                 delta_inputs.append(flatten_g) | ||||
|         flatten_w = container.no_grad_clone().flatten() | ||||
|         delta_inputs.append(flatten_w) | ||||
|         delta_inputs = torch.stack(delta_inputs, dim=-1) | ||||
|         delta = self.delta_net(delta_inputs) | ||||
|  | ||||
|         delta = torch.clamp(delta, -0.8, 0.8) | ||||
|         unflatten_delta = container.unflatten(delta) | ||||
|         future_container = container.no_grad_clone().additive(unflatten_delta) | ||||
|         return future_container | ||||
|  | ||||
|     def step(self): | ||||
|         torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) | ||||
|         self.meta_optimizer.step() | ||||
|  | ||||
|     def zero_grad(self): | ||||
|         self.meta_optimizer.zero_grad() | ||||
|         self.delta_net.zero_grad() | ||||
|  | ||||
|     def state_dict(self): | ||||
|         return dict( | ||||
|             delta_net=self.delta_net.state_dict(), | ||||
|             meta_optimizer=self.meta_optimizer.state_dict(), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|  | ||||
|     total_time = env_info["total"] | ||||
|     for i in range(total_time): | ||||
|         for xkey in ("timestamp", "x", "y"): | ||||
|             nkey = "{:}-{:}".format(i, xkey) | ||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) | ||||
|     train_time_bar = total_time // 2 | ||||
|     network = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|  | ||||
|     criterion = torch.nn.MSELoss() | ||||
|     logger.log("There are {:} weights.".format(network.get_w_container().numel())) | ||||
|  | ||||
|     adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion) | ||||
|  | ||||
|     # pre-train the model | ||||
|     init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) | ||||
|     init_loss = train_model(network, init_dataset, args.init_lr, args.epochs) | ||||
|     logger.log("The pre-training loss is {:.4f}".format(init_loss)) | ||||
|  | ||||
|     # LFNA meta-training | ||||
|     meta_loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         adaptor.zero_grad() | ||||
|  | ||||
|         batch_indexes, meta_losses = [], [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             sampled_timestamp = random.random() * train_time_bar | ||||
|             batch_indexes.append("{:.3f}".format(sampled_timestamp)) | ||||
|             seq_datasets = [] | ||||
|             for iseq in range(args.meta_seq + 1): | ||||
|                 cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval | ||||
|                 cur_time, (x, y) = dynamic_env(cur_time) | ||||
|                 seq_datasets.append(TimeData(cur_time, x, y)) | ||||
|             history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1] | ||||
|             future_container = adaptor.adapt(network, history_datasets) | ||||
|             future_y_hat = network.forward_with_container( | ||||
|                 future_dataset.x, future_container | ||||
|             ) | ||||
|             future_loss = adaptor.criterion(future_y_hat, future_dataset.y) | ||||
|             meta_losses.append(future_loss) | ||||
|         meta_loss = torch.stack(meta_losses).mean() | ||||
|         meta_loss.backward() | ||||
|         adaptor.step() | ||||
|  | ||||
|         meta_loss_meter.update(meta_loss.item()) | ||||
|  | ||||
|         logger.log( | ||||
|             "meta-loss: {:.4f} ({:.4f}) batch: {:}".format( | ||||
|                 meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5]) | ||||
|             ) | ||||
|         ) | ||||
|         if iepoch % 200 == 0: | ||||
|             save_checkpoint( | ||||
|                 {"adaptor": adaptor.state_dict(), "iepoch": iepoch}, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(1, env_info["total"]): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         seq_datasets = [] | ||||
|         for iseq in range(1, args.meta_seq + 1): | ||||
|             cur_time = future_time - iseq * dynamic_env.timestamp_interval | ||||
|             cur_time, (x, y) = dynamic_env(cur_time) | ||||
|             seq_datasets.append(TimeData(cur_time, x, y)) | ||||
|         seq_datasets.reverse() | ||||
|         future_container = adaptor.adapt(network, seq_datasets) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = network.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = adaptor.criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-fix-init", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=32, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_seq", | ||||
|         type=int, | ||||
|         default=10, | ||||
|         help="The length of the sequence for meta-model.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=1000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -1,239 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 --device cuda | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core, trunc_normal_ | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
|  | ||||
| # from lfna_models import HyperNet_VX as HyperNet | ||||
| from lfna_models import HyperNet | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(**model_kwargs) | ||||
|     model = model.to(args.device) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     total_bar = 100 | ||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, total_bar) | ||||
|     hypernet = hypernet.to(args.device) | ||||
|  | ||||
|     logger.log( | ||||
|         "{:} There are {:} weights in the base-model.".format( | ||||
|             time_string(), model.numel() | ||||
|         ) | ||||
|     ) | ||||
|     logger.log( | ||||
|         "{:} There are {:} weights in the meta-model.".format( | ||||
|             time_string(), hypernet.numel() | ||||
|         ) | ||||
|     ) | ||||
|     for i in range(total_bar): | ||||
|         env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device) | ||||
|         env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device) | ||||
|  | ||||
|     model.train() | ||||
|     hypernet.train() | ||||
|  | ||||
|     optimizer = torch.optim.Adam( | ||||
|         hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
|             int(args.epochs * 0.8), | ||||
|             int(args.epochs * 0.9), | ||||
|         ], | ||||
|         gamma=0.1, | ||||
|     ) | ||||
|  | ||||
|     # total_bar = env_info["total"] - 1 | ||||
|     # LFNA meta-training | ||||
|     loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     last_success = 0 | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         head_str = ( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         losses = [] | ||||
|         # for ibatch in range(args.meta_batch): | ||||
|         for cur_time in range(total_bar): | ||||
|             # cur_time = random.randint(0, total_bar) | ||||
|             # cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_time) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)] | ||||
|             cur_y = env_info["{:}-y".format(cur_time)] | ||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||
|  | ||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||
|             optimizer.zero_grad() | ||||
|             loss = criterion(preds, cur_dataset.y) | ||||
|  | ||||
|             losses.append(loss) | ||||
|  | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         lr_scheduler.step() | ||||
|  | ||||
|         loss_meter.update(final_loss.item()) | ||||
|         success, best_score = hypernet.save_best(-loss_meter.val) | ||||
|         if success: | ||||
|             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||
|             last_success = iepoch | ||||
|         if iepoch - last_success >= args.early_stop_thresh: | ||||
|             logger.log("Early stop at {:}".format(iepoch)) | ||||
|             break | ||||
|         if iepoch % 20 == 0: | ||||
|             logger.log( | ||||
|                 head_str | ||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||
|                     loss_meter.avg, | ||||
|                     loss_meter.val, | ||||
|                     min(lr_scheduler.get_last_lr()), | ||||
|                     len(losses), | ||||
|                 ) | ||||
|             ) | ||||
|  | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "hypernet": hypernet.state_dict(), | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "iepoch": iepoch, | ||||
|                 }, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|             loss_meter.reset() | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|     hypernet.load_best() | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, total_bar): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         # future_container = hypernet(task_embeds[idx]) | ||||
|         future_container = hypernet(idx) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-test-hpnet", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--layer_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=100, | ||||
|         help="The maximum epochs for early stop.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=64, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
|         type=str, | ||||
|         default="cpu", | ||||
|         help="", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.task_dim = args.layer_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -1,134 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-ttss-hpnet.py --env_version v1 --hidden_dim 16 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from lfna_models import HyperNet_VX as HyperNet | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(**model_kwargs) | ||||
|  | ||||
|     total_time = env_info["total"] | ||||
|     for i in range(total_time): | ||||
|         for xkey in ("timestamp", "x", "y"): | ||||
|             nkey = "{:}-{:}".format(i, xkey) | ||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) | ||||
|     train_time_bar = total_time // 2 | ||||
|  | ||||
|     criterion = torch.nn.MSELoss() | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|  | ||||
|     # pre-train the model | ||||
|     dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, 16) | ||||
|     print(hypernet) | ||||
|  | ||||
|     optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True) | ||||
|  | ||||
|     best_loss, best_param = None, None | ||||
|     for _iepoch in range(args.epochs): | ||||
|         container = hypernet(None) | ||||
|  | ||||
|         preds = model.forward_with_container(dataset.x, container) | ||||
|         optimizer.zero_grad() | ||||
|         loss = criterion(preds, dataset.y) | ||||
|         loss.backward() | ||||
|         optimizer.step() | ||||
|         # save best | ||||
|         if best_loss is None or best_loss > loss.item(): | ||||
|             best_loss = loss.item() | ||||
|             best_param = copy.deepcopy(model.state_dict()) | ||||
|     print("hyper-net : best={:.4f}".format(best_loss)) | ||||
|  | ||||
|     init_loss = train_model(model, init_dataset, args.init_lr, args.epochs) | ||||
|     logger.log("The pre-training loss is {:.4f}".format(init_loss)) | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-debug", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=32, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_seq", | ||||
|         type=int, | ||||
|         default=10, | ||||
|         help="The length of the sequence for meta-model.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -1,272 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-v1.py | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core | ||||
|  | ||||
|  | ||||
| class LFNAmlp: | ||||
|     """A LFNA meta-model that uses the MLP as delta-net.""" | ||||
|  | ||||
|     def __init__(self, obs_dim, hidden_sizes, act_name): | ||||
|         self.delta_net = super_core.SuperSequential( | ||||
|             super_core.SuperLinear(obs_dim, hidden_sizes[0]), | ||||
|             super_core.super_name2activation[act_name](), | ||||
|             super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), | ||||
|             super_core.super_name2activation[act_name](), | ||||
|             super_core.SuperLinear(hidden_sizes[1], 1), | ||||
|         ) | ||||
|         self.meta_optimizer = torch.optim.Adam( | ||||
|             self.delta_net.parameters(), lr=0.01, amsgrad=True | ||||
|         ) | ||||
|  | ||||
|     def adapt(self, model, criterion, w_container, seq_datasets): | ||||
|         w_container.requires_grad_(True) | ||||
|         containers = [w_container] | ||||
|         for idx, dataset in enumerate(seq_datasets): | ||||
|             x, y = dataset.x, dataset.y | ||||
|             y_hat = model.forward_with_container(x, containers[-1]) | ||||
|             loss = criterion(y_hat, y) | ||||
|             gradients = torch.autograd.grad(loss, containers[-1].tensors) | ||||
|             with torch.no_grad(): | ||||
|                 flatten_w = containers[-1].flatten().view(-1, 1) | ||||
|                 flatten_g = containers[-1].flatten(gradients).view(-1, 1) | ||||
|                 input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2) | ||||
|                 input_statistics = input_statistics.expand(flatten_w.numel(), -1) | ||||
|             delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1) | ||||
|             delta = self.delta_net(delta_inputs).view(-1) | ||||
|             delta = torch.clamp(delta, -0.5, 0.5) | ||||
|             unflatten_delta = containers[-1].unflatten(delta) | ||||
|             future_container = containers[-1].no_grad_clone().additive(unflatten_delta) | ||||
|             # future_container = containers[-1].additive(unflatten_delta) | ||||
|             containers.append(future_container) | ||||
|         # containers = containers[1:] | ||||
|         meta_loss = [] | ||||
|         temp_containers = [] | ||||
|         for idx, dataset in enumerate(seq_datasets): | ||||
|             if idx == 0: | ||||
|                 continue | ||||
|             current_container = containers[idx] | ||||
|             y_hat = model.forward_with_container(dataset.x, current_container) | ||||
|             loss = criterion(y_hat, dataset.y) | ||||
|             meta_loss.append(loss) | ||||
|             temp_containers.append((dataset.timestamp, current_container, -loss.item())) | ||||
|         meta_loss = sum(meta_loss) | ||||
|         w_container.requires_grad_(False) | ||||
|         # meta_loss.backward() | ||||
|         # self.meta_optimizer.step() | ||||
|         return meta_loss, temp_containers | ||||
|  | ||||
|     def step(self): | ||||
|         torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) | ||||
|         self.meta_optimizer.step() | ||||
|  | ||||
|     def zero_grad(self): | ||||
|         self.meta_optimizer.zero_grad() | ||||
|         self.delta_net.zero_grad() | ||||
|  | ||||
|  | ||||
| class TimeData: | ||||
|     def __init__(self, timestamp, xs, ys): | ||||
|         self._timestamp = timestamp | ||||
|         self._xs = xs | ||||
|         self._ys = ys | ||||
|  | ||||
|     @property | ||||
|     def x(self): | ||||
|         return self._xs | ||||
|  | ||||
|     @property | ||||
|     def y(self): | ||||
|         return self._ys | ||||
|  | ||||
|     @property | ||||
|     def timestamp(self): | ||||
|         return self._timestamp | ||||
|  | ||||
|  | ||||
| class Population: | ||||
|     """A population used to maintain models at different timestamps.""" | ||||
|  | ||||
|     def __init__(self): | ||||
|         self._time2model = dict() | ||||
|         self._time2score = dict()  # higher is better | ||||
|  | ||||
|     def append(self, timestamp, model, score): | ||||
|         if timestamp in self._time2model: | ||||
|             if self._time2score[timestamp] > score: | ||||
|                 return | ||||
|         self._time2model[timestamp] = model.no_grad_clone() | ||||
|         self._time2score[timestamp] = score | ||||
|  | ||||
|     def query(self, timestamp): | ||||
|         closet_timestamp = None | ||||
|         for xtime, model in self._time2model.items(): | ||||
|             if closet_timestamp is None or ( | ||||
|                 xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime | ||||
|             ): | ||||
|                 closet_timestamp = xtime | ||||
|         return self._time2model[closet_timestamp], closet_timestamp | ||||
|  | ||||
|     def debug_info(self, timestamps): | ||||
|         xstrs = [] | ||||
|         for timestamp in timestamps: | ||||
|             if timestamp in self._time2score: | ||||
|                 xstrs.append( | ||||
|                     "{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp]) | ||||
|                 ) | ||||
|         return ", ".join(xstrs) | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     prepare_seed(args.rand_seed) | ||||
|     logger = prepare_logger(args) | ||||
|  | ||||
|     cache_path = (logger.path(None) / ".." / "env-info.pth").resolve() | ||||
|     if cache_path.exists(): | ||||
|         env_info = torch.load(cache_path) | ||||
|     else: | ||||
|         env_info = dict() | ||||
|         dynamic_env = get_synthetic_env() | ||||
|         env_info["total"] = len(dynamic_env) | ||||
|         for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)): | ||||
|             env_info["{:}-timestamp".format(idx)] = timestamp | ||||
|             env_info["{:}-x".format(idx)] = _allx | ||||
|             env_info["{:}-y".format(idx)] = _ally | ||||
|         env_info["dynamic_env"] = dynamic_env | ||||
|         torch.save(env_info, cache_path) | ||||
|  | ||||
|     total_time = env_info["total"] | ||||
|     for i in range(total_time): | ||||
|         for xkey in ("timestamp", "x", "y"): | ||||
|             nkey = "{:}-{:}".format(i, xkey) | ||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) | ||||
|     train_time_bar = total_time // 2 | ||||
|     base_model = get_model( | ||||
|         dict(model_type="simple_mlp"), | ||||
|         act_cls="leaky_relu", | ||||
|         norm_cls="identity", | ||||
|         input_dim=1, | ||||
|         output_dim=1, | ||||
|     ) | ||||
|  | ||||
|     w_container = base_model.get_w_container() | ||||
|     criterion = torch.nn.MSELoss() | ||||
|     print("There are {:} weights.".format(w_container.numel())) | ||||
|  | ||||
|     adaptor = LFNAmlp(4, (50, 20), "leaky_relu") | ||||
|  | ||||
|     pool = Population() | ||||
|     pool.append(0, w_container, -100) | ||||
|  | ||||
|     # LFNA meta-training | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         adaptor.zero_grad() | ||||
|  | ||||
|         debug_timestamp = set() | ||||
|         all_meta_losses = [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             sampled_timestamp = random.randint(0, train_time_bar) | ||||
|             query_w_container, query_timestamp = pool.query(sampled_timestamp) | ||||
|             # def adapt(self, model, w_container, xs, ys): | ||||
|             seq_datasets = [] | ||||
|             # xs, ys = [], [] | ||||
|             for it in range(sampled_timestamp, sampled_timestamp + args.max_seq): | ||||
|                 xs = env_info["{:}-x".format(it)] | ||||
|                 ys = env_info["{:}-y".format(it)] | ||||
|                 seq_datasets.append(TimeData(it, xs, ys)) | ||||
|             temp_meta_loss, temp_containers = adaptor.adapt( | ||||
|                 base_model, criterion, query_w_container, seq_datasets | ||||
|             ) | ||||
|             all_meta_losses.append(temp_meta_loss) | ||||
|             for temp_time, temp_container, temp_score in temp_containers: | ||||
|                 pool.append(temp_time, temp_container, temp_score) | ||||
|                 debug_timestamp.add(temp_time) | ||||
|         meta_loss = torch.stack(all_meta_losses).mean() | ||||
|         meta_loss.backward() | ||||
|         adaptor.step() | ||||
|  | ||||
|         debug_str = pool.debug_info(debug_timestamp) | ||||
|         logger.log("meta-loss: {:.4f}".format(meta_loss.item())) | ||||
|  | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-v1", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=5, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=1000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--max_seq", | ||||
|         type=int, | ||||
|         default=5, | ||||
|         help="The maximum length of the sequence.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--workers", | ||||
|         type=int, | ||||
|         default=4, | ||||
|         help="The number of data loading workers (default: 4)", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     main(args) | ||||
| @@ -1,50 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import copy | ||||
| import torch | ||||
|  | ||||
| from xlayers import super_core | ||||
| from xlayers import trunc_normal_ | ||||
| from models.xcore import get_model | ||||
|  | ||||
|  | ||||
| class HyperNet(super_core.SuperModule): | ||||
|     def __init__(self, shape_container, input_embeding, return_container=True): | ||||
|         super(HyperNet, self).__init__() | ||||
|         self._shape_container = shape_container | ||||
|         self._num_layers = len(shape_container) | ||||
|         self._numel_per_layer = [] | ||||
|         for ilayer in range(self._num_layers): | ||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "_super_layer_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)), | ||||
|         ) | ||||
|         trunc_normal_(self._super_layer_embed, std=0.02) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             input_dim=input_embeding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dim=input_embeding * 4, | ||||
|             act_cls="sigmoid", | ||||
|             norm_cls="identity", | ||||
|         ) | ||||
|         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|         self._return_container = return_container | ||||
|         print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|     def forward_raw(self, input): | ||||
|         weights = self._generator(self._super_layer_embed) | ||||
|         if self._return_container: | ||||
|             weights = torch.split(weights, 1) | ||||
|             return self._shape_container.translate(weights) | ||||
|         else: | ||||
|             return weights | ||||
|  | ||||
|     def forward_candidate(self, input): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) | ||||
| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/basic-maml.py --env_version v1 --hidden_dim 16 --inner_step 5 | ||||
| # python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5 | ||||
| # python exps/LFNA/basic-maml.py --env_version v2 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| @@ -20,7 +20,7 @@ from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from datasets.synthetic_core import get_synthetic_env, EnvSampler | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core | ||||
|  | ||||
| @@ -42,11 +42,10 @@ class MAML: | ||||
|         self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|             self.meta_optimizer, | ||||
|             milestones=[ | ||||
|                 int(epochs * 0.25), | ||||
|                 int(epochs * 0.5), | ||||
|                 int(epochs * 0.75), | ||||
|                 int(epochs * 0.8), | ||||
|                 int(epochs * 0.9), | ||||
|             ], | ||||
|             gamma=0.3, | ||||
|             gamma=0.1, | ||||
|         ) | ||||
|         self.inner_lr = inner_lr | ||||
|         self.inner_step = inner_step | ||||
| @@ -85,33 +84,27 @@ class MAML: | ||||
|         self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"]) | ||||
|         self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"]) | ||||
|  | ||||
|     def save_best(self, iepoch, score): | ||||
|         if self._best_info["score"] is None or self._best_info["score"] < score: | ||||
|             state_dict = dict( | ||||
|                 criterion=self.criterion.state_dict(), | ||||
|                 network=self.network.state_dict(), | ||||
|                 meta_optimizer=self.meta_optimizer.state_dict(), | ||||
|                 meta_lr_scheduler=self.meta_lr_scheduler.state_dict(), | ||||
|             ) | ||||
|             self._best_info["state_dict"] = state_dict | ||||
|             self._best_info["score"] = score | ||||
|             self._best_info["iepoch"] = iepoch | ||||
|             is_best = True | ||||
|         else: | ||||
|             is_best = False | ||||
|         return self._best_info, is_best | ||||
|     def state_dict(self): | ||||
|         state_dict = dict() | ||||
|         state_dict["criterion"] = self.criterion.state_dict() | ||||
|         state_dict["network"] = self.network.state_dict() | ||||
|         state_dict["meta_optimizer"] = self.meta_optimizer.state_dict() | ||||
|         state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict() | ||||
|         return state_dict | ||||
|  | ||||
|     def save_best(self, score): | ||||
|         success, best_score = self.network.save_best(score) | ||||
|         return success, best_score | ||||
|  | ||||
|     def load_best(self): | ||||
|         self.network.load_best() | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|     model = get_model(**model_kwargs) | ||||
|  | ||||
|     total_time = env_info["total"] | ||||
|     for i in range(total_time): | ||||
|         for xkey in ("timestamp", "x", "y"): | ||||
|             nkey = "{:}-{:}".format(i, xkey) | ||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) | ||||
|     train_time_bar = total_time // 2 | ||||
|     dynamic_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|  | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
| @@ -120,83 +113,65 @@ def main(args): | ||||
|     ) | ||||
|  | ||||
|     # meta-training | ||||
|     last_success_epoch = 0 | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     # for iepoch in range(args.epochs): | ||||
|     iepoch = 0 | ||||
|     while iepoch < args.epochs: | ||||
|     for iepoch in range(args.epochs): | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|         head_str = ( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         maml.zero_grad() | ||||
|         batch_indexes, meta_losses = [], [] | ||||
|         meta_losses = [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             sampled_timestamp = random.randint(0, train_time_bar) | ||||
|             batch_indexes.append("{:5d}".format(sampled_timestamp)) | ||||
|             past_dataset = TimeData( | ||||
|                 sampled_timestamp, | ||||
|                 env_info["{:}-x".format(sampled_timestamp)], | ||||
|                 env_info["{:}-y".format(sampled_timestamp)], | ||||
|             future_timestamp = dynamic_env.random_timestamp() | ||||
|             _, (future_x, future_y) = dynamic_env(future_timestamp) | ||||
|             past_timestamp = ( | ||||
|                 future_timestamp - args.prev_time * dynamic_env.timestamp_interval | ||||
|             ) | ||||
|             future_dataset = TimeData( | ||||
|                 sampled_timestamp + 1, | ||||
|                 env_info["{:}-x".format(sampled_timestamp + 1)], | ||||
|                 env_info["{:}-y".format(sampled_timestamp + 1)], | ||||
|             ) | ||||
|             future_container = maml.adapt(past_dataset) | ||||
|             future_y_hat = maml.predict(future_dataset.x, future_container) | ||||
|             future_loss = maml.criterion(future_y_hat, future_dataset.y) | ||||
|             _, (past_x, past_y) = dynamic_env(past_timestamp) | ||||
|  | ||||
|             future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y)) | ||||
|             future_y_hat = maml.predict(future_x, future_container) | ||||
|             future_loss = maml.criterion(future_y_hat, future_y) | ||||
|             meta_losses.append(future_loss) | ||||
|         meta_loss = torch.stack(meta_losses).mean() | ||||
|         meta_loss.backward() | ||||
|         maml.step() | ||||
|  | ||||
|         logger.log( | ||||
|             "meta-loss: {:.4f}  batch: {:}".format( | ||||
|                 meta_loss.item(), ",".join(batch_indexes) | ||||
|             ) | ||||
|         ) | ||||
|         best_info, is_best = maml.save_best(iepoch, -meta_loss.item()) | ||||
|         if is_best: | ||||
|             save_checkpoint(best_info, logger.path("best"), logger) | ||||
|             logger.log("Save the best into {:}".format(logger.path("best"))) | ||||
|         if iepoch >= 10 and ( | ||||
|             torch.isnan(meta_loss).item() or meta_loss.item() >= args.fail_thresh | ||||
|         ): | ||||
|             xdata = torch.load(logger.path("best")) | ||||
|             maml.load_state_dict(xdata["state_dict"]) | ||||
|             iepoch = xdata["iepoch"] | ||||
|             logger.log( | ||||
|                 "The training failed, re-use the previous best epoch [{:}]".format( | ||||
|                     iepoch | ||||
|                 ) | ||||
|             ) | ||||
|         else: | ||||
|             iepoch = iepoch + 1 | ||||
|         logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item())) | ||||
|         success, best_score = maml.save_best(-meta_loss.item()) | ||||
|         if success: | ||||
|             logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) | ||||
|             save_checkpoint(maml.state_dict(), logger.path("model"), logger) | ||||
|             last_success_epoch = iepoch | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||
|             logger.log("Early stop at {:}".format(iepoch)) | ||||
|             break | ||||
|  | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     # meta-test | ||||
|     maml.load_best() | ||||
|     eval_env = env_info["dynamic_env"] | ||||
|     assert eval_env.timestamp_interval == dynamic_env.timestamp_interval | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(1, env_info["total"]): | ||||
|         past_dataset = TimeData( | ||||
|             idx - 1, | ||||
|             env_info["{:}-x".format(idx - 1)], | ||||
|             env_info["{:}-y".format(idx - 1)], | ||||
|     for idx in range(args.prev_time, len(eval_env)): | ||||
|         future_timestamp, (future_x, future_y) = eval_env[idx] | ||||
|         past_timestamp = ( | ||||
|             future_timestamp.item() - args.prev_time * eval_env.timestamp_interval | ||||
|         ) | ||||
|         current_container = maml.adapt(past_dataset) | ||||
|         w_container_per_epoch[idx] = current_container.no_grad_clone() | ||||
|         _, (past_x, past_y) = eval_env(past_timestamp) | ||||
|         future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y)) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             current_x = env_info["{:}-x".format(idx)] | ||||
|             current_y = env_info["{:}-y".format(idx)] | ||||
|             current_y_hat = maml.predict(current_x, w_container_per_epoch[idx]) | ||||
|             current_loss = maml.criterion(current_y_hat, current_y) | ||||
|         logger.log( | ||||
|             "meta-test: [{:03d}] -> loss={:.4f}".format(idx, current_loss.item()) | ||||
|         ) | ||||
|             future_y_hat = maml.predict(future_x, w_container_per_epoch[idx]) | ||||
|             future_loss = maml.criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
| @@ -224,13 +199,13 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         default=16, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_lr", | ||||
|         type=float, | ||||
|         default=0.05, | ||||
|         default=0.01, | ||||
|         help="The learning rate for the MAML optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
| @@ -242,24 +217,36 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--inner_lr", | ||||
|         type=float, | ||||
|         default=0.01, | ||||
|         default=0.005, | ||||
|         help="The learning rate for the inner optimization", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--inner_step", type=int, default=1, help="The inner loop steps for MAML." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--prev_time", | ||||
|         type=int, | ||||
|         default=5, | ||||
|         help="The gap between prev_time and current_timestamp", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=10, | ||||
|         default=64, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=1000, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=50, | ||||
|         help="The maximum epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--workers", | ||||
|         type=int, | ||||
| @@ -272,7 +259,13 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-s{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.inner_step, args.env_version, args.hidden_dim | ||||
|     args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format( | ||||
|         args.save_dir, | ||||
|         args.inner_step, | ||||
|         args.meta_lr, | ||||
|         args.hidden_dim, | ||||
|         args.prev_time, | ||||
|         args.epochs, | ||||
|         args.env_version, | ||||
|     ) | ||||
|     main(args) | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/basic-prev.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||
| # python exps/LFNA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||
| # python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| @@ -41,7 +41,7 @@ def main(args): | ||||
|     w_container_per_epoch = dict() | ||||
|  | ||||
|     per_timestamp_time, start_time = AverageMeter(), time.time() | ||||
|     for idx in range(1, env_info["total"]): | ||||
|     for idx in range(args.prev_time, env_info["total"]): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) | ||||
| @@ -53,8 +53,8 @@ def main(args): | ||||
|             + need_time | ||||
|         ) | ||||
|         # train the same data | ||||
|         historical_x = env_info["{:}-x".format(idx - 1)] | ||||
|         historical_y = env_info["{:}-y".format(idx - 1)] | ||||
|         historical_x = env_info["{:}-x".format(idx - args.prev_time)] | ||||
|         historical_y = env_info["{:}-y".format(idx - args.prev_time)] | ||||
|         # build model | ||||
|         model = get_model(**model_kwargs) | ||||
|         print(model) | ||||
| @@ -160,6 +160,12 @@ if __name__ == "__main__": | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--prev_time", | ||||
|         type=int, | ||||
|         default=5, | ||||
|         help="The gap between prev_time and current_timestamp", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--batch_size", | ||||
|         type=int, | ||||
| @@ -184,7 +190,12 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     args.save_dir = "{:}-d{:}_e{:}_lr{:}-prev{:}-env{:}".format( | ||||
|         args.save_dir, | ||||
|         args.hidden_dim, | ||||
|         args.epochs, | ||||
|         args.init_lr, | ||||
|         args.prev_time, | ||||
|         args.env_version, | ||||
|     ) | ||||
|     main(args) | ||||
|   | ||||
| @@ -41,7 +41,7 @@ def main(args): | ||||
|     w_container_per_epoch = dict() | ||||
|  | ||||
|     per_timestamp_time, start_time = AverageMeter(), time.time() | ||||
|     for idx in range(env_info["total"]): | ||||
|     for idx in range(1, env_info["total"]): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) | ||||
| @@ -184,7 +184,7 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format( | ||||
|         args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version | ||||
|     ) | ||||
|     main(args) | ||||
|   | ||||
| @@ -157,11 +157,11 @@ def main(args): | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     # meta-training | ||||
|     # meta-test | ||||
|     meta_model.load_best() | ||||
|     eval_env = env_info["dynamic_env"] | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(args.seq_length, env_info["total"]): | ||||
|     for idx in range(args.seq_length, len(eval_env)): | ||||
|         # build-timestamp | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         time_seqs = [] | ||||
| @@ -176,8 +176,8 @@ def main(args): | ||||
|             future_container = seq_containers[-1] | ||||
|             w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|             # evaluation | ||||
|             future_x = env_info["{:}-x".format(idx)] | ||||
|             future_y = env_info["{:}-y".format(idx)] | ||||
|             future_x = env_info["{:}-x".format(idx)].to(args.device) | ||||
|             future_y = env_info["{:}-y".format(idx)].to(args.device) | ||||
|             future_y_hat = base_model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
| @@ -299,12 +299,12 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}_{:}_{:}-e{:}".format( | ||||
|     args.save_dir = "{:}-d{:}_{:}_{:}-e{:}-env{:}".format( | ||||
|         args.save_dir, | ||||
|         args.env_version, | ||||
|         args.hidden_dim, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
|         args.epochs, | ||||
|         args.env_version, | ||||
|     ) | ||||
|     main(args) | ||||
|   | ||||
| @@ -237,18 +237,20 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | ||||
|     env_info = torch.load(cache_path) | ||||
|  | ||||
|     alg_name2dir = OrderedDict() | ||||
|     alg_name2dir["Optimal"] = "use-same-timestamp" | ||||
|     # alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data" | ||||
|     # alg_name2dir["MAML"] = "use-maml-s1" | ||||
|     # alg_name2dir["LFNA (fix init)"] = "lfna-fix-init" | ||||
|     alg_name2dir["LFNA (debug)"] = "lfna-tall-hpnet" | ||||
|     alg_name2all_containers = OrderedDict() | ||||
|     if version == "v1": | ||||
|         poststr = "v1-d16" | ||||
|         # alg_name2dir["Optimal"] = "use-same-timestamp" | ||||
|         alg_name2dir["LFNA"] = "lfna-battle-v1-d16_16_16-e200" | ||||
|         alg_name2dir[ | ||||
|             "Previous Timestamp" | ||||
|         ] = "use-prev-timestamp-d16_e500_lr0.1-prev5-envv1" | ||||
|     else: | ||||
|         raise ValueError("Invalid version: {:}".format(version)) | ||||
|     alg_name2all_containers = OrderedDict() | ||||
|     for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()): | ||||
|         ckp_path = Path(alg_dir) / "{:}-{:}".format(xdir, poststr) / "final-ckp.pth" | ||||
|         ckp_path = Path(alg_dir) / str(xdir) / "final-ckp.pth" | ||||
|         xdata = torch.load(ckp_path, map_location="cpu") | ||||
|         alg_name2all_containers[alg] = xdata["w_container_per_epoch"] | ||||
|     # load the basic model | ||||
| @@ -267,11 +269,11 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp | ||||
|  | ||||
|     linewidths = 10 | ||||
|     linewidths, skip = 10, 5 | ||||
|     for idx, (timestamp, (ori_allx, ori_ally)) in enumerate( | ||||
|         tqdm(dynamic_env, ncols=50) | ||||
|     ): | ||||
|         if idx == 0: | ||||
|         if idx <= skip: | ||||
|             continue | ||||
|         fig = plt.figure(figsize=figsize) | ||||
|         cur_ax = fig.add_subplot(2, 1, 1) | ||||
| @@ -335,9 +337,9 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"): | ||||
|         cur_ax.set_ylim(0, 10) | ||||
|         cur_ax.legend(loc=1, fontsize=LegendFontsize) | ||||
|  | ||||
|         pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx) | ||||
|         pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx - skip) | ||||
|         fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf") | ||||
|         png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx) | ||||
|         png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx - skip) | ||||
|         fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png") | ||||
|         plt.close("all") | ||||
|     save_dir = save_dir.resolve() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user