Sync NATS-Bench's v1.0 and update algorithm names
This commit is contained in:
		| @@ -3,8 +3,8 @@ | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| # - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| import torch.nn as nn | ||||
| @@ -52,10 +52,10 @@ class GenericNAS301Model(nn.Module): | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
|     assert self._algo is None, 'This functioin can only be called once.' | ||||
|     assert algo in ['fbv2', 'tunas', 'tas'], 'invalid algo : {:}'.format(algo) | ||||
|     assert algo in ['mask_gumbel', 'mask_rl', 'tas'], 'invalid algo : {:}'.format(algo) | ||||
|     self._algo = algo | ||||
|     self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs))) | ||||
|     # if algo == 'fbv2' or algo == 'tunas': | ||||
|     # if algo == 'mask_gumbel' or algo == 'mask_rl': | ||||
|     self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))) | ||||
|     for i in range(len(self._candidate_Cs)): | ||||
|       self._masks.data[i, :self._candidate_Cs[i]] = 1 | ||||
| @@ -130,7 +130,7 @@ class GenericNAS301Model(nn.Module): | ||||
|         else: | ||||
|           mask = self._masks[random.randint(0, len(self._masks)-1)] | ||||
|         feature = feature * mask.view(1, -1, 1, 1) | ||||
|       elif self._algo == 'fbv2': | ||||
|       elif self._algo == 'mask_gumbel': | ||||
|         weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1) | ||||
|         mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1) | ||||
|         feature = feature * mask | ||||
| @@ -148,7 +148,7 @@ class GenericNAS301Model(nn.Module): | ||||
|         else: | ||||
|           miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device) | ||||
|           feature = torch.cat((out, miss), dim=1) | ||||
|       elif self._algo == 'tunas': | ||||
|       elif self._algo == 'mask_rl': | ||||
|         prob = nn.functional.softmax(self._arch_parameters[idx:idx+1], dim=-1) | ||||
|         dist = torch.distributions.Categorical(prob) | ||||
|         action = dist.sample() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user