Support accumulate and reset time function for API
This commit is contained in:
		
							
								
								
									
										266
									
								
								exps/algos-v2/R_EA.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										266
									
								
								exps/algos-v2/R_EA.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,266 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################################## | ||||
| # Regularized Evolution for Image Classifier Architecture Search # | ||||
| ################################################################## | ||||
| # python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/R_EA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/R_EA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # | ||||
| # | ||||
| # | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_201_api  import NASBench201API, NASBench301API | ||||
| from models       import CellStructure, get_search_spaces | ||||
|  | ||||
|  | ||||
| class Model(object): | ||||
|  | ||||
|   def __init__(self): | ||||
|     self.arch = None | ||||
|     self.accuracy = None | ||||
|      | ||||
|   def __str__(self): | ||||
|     """Prints a readable version of this bitstring.""" | ||||
|     return '{:}'.format(self.arch) | ||||
|    | ||||
|  | ||||
| # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`. | ||||
| # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch. | ||||
| # For use_012_epoch_training = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0. | ||||
| #       In this case, the LR schedular is converged. | ||||
| # For use_012_epoch_training = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure. | ||||
| #        | ||||
| def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_012_epoch_training=True): | ||||
|  | ||||
|   if use_012_epoch_training and nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||
|   elif not use_012_epoch_training and nas_bench is not None: | ||||
|     # Please contact me if you want to use the following logic, because it has some potential issues. | ||||
|     # Please use `use_012_epoch_training=False` for cifar10 only. | ||||
|     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details) | ||||
|     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25 | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch=None, hp='12') | ||||
|     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', hp='200') | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, nepoch, hp='200', is_random=True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready). | ||||
|     cost = nas_bench.get_cost_info(arch_index, dataname, hp='200') | ||||
|     # The following codes are used to estimate the time cost. | ||||
|     # When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record. | ||||
|     # When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared. | ||||
|     nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, | ||||
|             'cifar10-valid-train' : 25000,  'cifar10-valid-valid' : 25000, | ||||
|             'cifar100-train'      : 50000,  'cifar100-valid'      : 5000} | ||||
|     estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch | ||||
|     estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency'] | ||||
|     try: | ||||
|       valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|     except: | ||||
|       valid_acc, time_cost = info['valtest-accuracy'], estimated_train_cost + estimated_valid_cost | ||||
|   else: | ||||
|     # train a model from scratch. | ||||
|     raise ValueError('NOT IMPLEMENT YET') | ||||
|   return valid_acc, time_cost | ||||
|  | ||||
|  | ||||
| def random_topology_func(op_names, max_nodes=4): | ||||
|   # Return a random architecture | ||||
|   def random_architecture(): | ||||
|     genotypes = [] | ||||
|     for i in range(1, max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = random.choice( op_names ) | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|   return random_architecture | ||||
|  | ||||
|  | ||||
| def random_size_func(info): | ||||
|   # Return a random architecture | ||||
|   def random_architecture(): | ||||
|     channels = [] | ||||
|     for i in range(info['numbers']): | ||||
|       channels.append( | ||||
|         str(random.choice(info['candidates']))) | ||||
|     return ':'.join(channels) | ||||
|   return random_architecture | ||||
|  | ||||
|  | ||||
| def mutate_topology_func(op_names): | ||||
|   """Computes the architecture for a child of the given parent architecture. | ||||
|   The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another. | ||||
|   """ | ||||
|   def mutate_topology_func(parent_arch): | ||||
|     child_arch = deepcopy( parent_arch ) | ||||
|     node_id = random.randint(0, len(child_arch.nodes)-1) | ||||
|     node_info = list( child_arch.nodes[node_id] ) | ||||
|     snode_id = random.randint(0, len(node_info)-1) | ||||
|     xop = random.choice( op_names ) | ||||
|     while xop == node_info[snode_id][0]: | ||||
|       xop = random.choice( op_names ) | ||||
|     node_info[snode_id] = (xop, node_info[snode_id][1]) | ||||
|     child_arch.nodes[node_id] = tuple( node_info ) | ||||
|     return child_arch | ||||
|   return mutate_topology_func | ||||
|  | ||||
|  | ||||
| def mutate_size_func(info): | ||||
|   """Computes the architecture for a child of the given parent architecture. | ||||
|   The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another. | ||||
|   """ | ||||
|   def mutate_size_func(parent_arch): | ||||
|     child_arch = deepcopy(parent_arch) | ||||
|     child_arch = child_arch.split(':') | ||||
|     index = random.randint(0, len(child_arch)-1) | ||||
|     child_arch[index] = str(random.choice(info['candidates'])) | ||||
|     return ':'.join(child_arch) | ||||
|   return mutate_size_func | ||||
|  | ||||
|  | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, dataset): | ||||
|   """Algorithm for regularized evolution (i.e. aging evolution). | ||||
|    | ||||
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||
|   Classifier Architecture Search". | ||||
|    | ||||
|   Args: | ||||
|     cycles: the number of cycles the algorithm should run for. | ||||
|     population_size: the number of individuals to keep in the population. | ||||
|     sample_size: the number of individuals that should participate in each tournament. | ||||
|     time_budget: the upper bound of searching cost | ||||
|  | ||||
|   Returns: | ||||
|     history: a list of `Model` instances, representing all the models computed | ||||
|         during the evolution experiment. | ||||
|   """ | ||||
|   population = collections.deque() | ||||
|   api.reset_time() | ||||
|   history, total_time_cost = [], []  # Not used by the algorithm, only used to report results. | ||||
|  | ||||
|   # Initialize the population with random models. | ||||
|   while len(population) < population_size: | ||||
|     model = Model() | ||||
|     model.arch = random_arch() | ||||
|     model.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||
|     # Append the info | ||||
|     population.append(model) | ||||
|     history.append(model) | ||||
|     total_time_cost.append(total_cost) | ||||
|  | ||||
|   # Carry out evolution in cycles. Each cycle produces a model and removes another. | ||||
|   while total_time_cost[-1] < time_budget: | ||||
|     # Sample randomly chosen models from the current population. | ||||
|     start_time, sample = time.time(), [] | ||||
|     while len(sample) < sample_size: | ||||
|       # Inefficient, but written this way for clarity. In the case of neural | ||||
|       # nets, the efficiency of this line is irrelevant because training neural | ||||
|       # nets is the rate-determining step. | ||||
|       candidate = random.choice(list(population)) | ||||
|       sample.append(candidate) | ||||
|  | ||||
|     # The parent is the best model in the sample. | ||||
|     parent = max(sample, key=lambda i: i.accuracy) | ||||
|  | ||||
|     # Create the child model and store it. | ||||
|     child = Model() | ||||
|     child.arch = mutate_arch(parent.arch) | ||||
|     child.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||
|     # Append the info | ||||
|     population.append(child) | ||||
|     history.append(child) | ||||
|     total_time_cost.append(total_cost) | ||||
|  | ||||
|     # Remove the oldest model. | ||||
|     population.popleft() | ||||
|   return history, total_time_cost | ||||
|  | ||||
|  | ||||
| def main(xargs, api): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads(xargs.workers) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||
|   if xargs.search_space == 'tss': | ||||
|     random_arch = random_topology_func(search_space) | ||||
|     mutate_arch = mutate_topology_func(search_space) | ||||
|   else: | ||||
|     random_arch = random_size_func(search_space) | ||||
|     mutate_arch = mutate_size_func(search_space) | ||||
|  | ||||
|   x_start_time = time.time() | ||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||
|   history, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||
|   best_arch = max(history, key=lambda i: i.accuracy) | ||||
|   best_arch = best_arch.arch | ||||
|   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) | ||||
|    | ||||
|   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||
|   logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|   logger.close() | ||||
|   return logger.log_dir, [api.query_index_by_arch(x.arch) for x in history], total_times | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') | ||||
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|  | ||||
|   if args.search_space == 'tss': | ||||
|     api = NASBench201API(verbose=False) | ||||
|   elif args.search_space == 'sss': | ||||
|     api = NASBench301API(verbose=False) | ||||
|   else: | ||||
|     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||
|  | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), 'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info, num = None, {}, 500 | ||||
|     for i in range(num): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|       save_dir, all_archs, all_total_times = main(args, api) | ||||
|       all_info[i] = {'all_archs': all_archs, | ||||
|                      'all_total_times': all_total_times} | ||||
|     torch.save(all_info, save_dir / 'results.pth') | ||||
|   else: | ||||
|     main(args, api) | ||||
		Reference in New Issue
	
	Block a user