Update for Rebuttal
This commit is contained in:
		| @@ -26,6 +26,27 @@ from nats_bench import create | |||||||
| from log_utils import time_string | from log_utils import time_string | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||||
|  |   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||||
|  |   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||||
|  |   alg2name['REA'] = 'R-EA-SS3' | ||||||
|  |   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||||
|  |   alg2name['RANDOM'] = 'RANDOM' | ||||||
|  |   alg2name['BOHB'] = 'BOHB' | ||||||
|  |   for alg, name in alg2name.items(): | ||||||
|  |     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||||
|  |     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||||
|  |   alg2data = OrderedDict() | ||||||
|  |   for alg, path in alg2path.items(): | ||||||
|  |     data = torch.load(path) | ||||||
|  |     for index, info in data.items(): | ||||||
|  |       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||||
|  |       for j, arch in enumerate(info['all_archs']): | ||||||
|  |         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||||
|  |     alg2data[alg] = data | ||||||
|  |   return alg2data | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_valid_test_acc(api, arch, dataset): | def get_valid_test_acc(api, arch, dataset): | ||||||
|   is_size_space = api.search_space_name == 'size' |   is_size_space = api.search_space_name == 'size' | ||||||
|   if dataset == 'cifar10': |   if dataset == 'cifar10': | ||||||
| @@ -52,7 +73,6 @@ def show_valid_test(api, arch): | |||||||
| def find_best_valid(api, dataset): | def find_best_valid(api, dataset): | ||||||
|   all_valid_accs, all_test_accs = [], [] |   all_valid_accs, all_test_accs = [], [] | ||||||
|   for index, arch in enumerate(api): |   for index, arch in enumerate(api): | ||||||
|     # import pdb; pdb.set_trace() |  | ||||||
|     valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset) |     valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset) | ||||||
|     all_valid_accs.append((index, valid_acc)) |     all_valid_accs.append((index, valid_acc)) | ||||||
|     all_test_accs.append((index, test_acc)) |     all_test_accs.append((index, test_acc)) | ||||||
| @@ -68,8 +88,62 @@ def find_best_valid(api, dataset): | |||||||
|   print('using test       ::: {:}'.format(perf_str)) |   print('using test       ::: {:}'.format(perf_str)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def interplate_fn(xpair1, xpair2, x): | ||||||
|  |   (x1, y1) = xpair1 | ||||||
|  |   (x2, y2) = xpair2 | ||||||
|  |   return (x2 - x) / (x2 - x1) * y1 + \ | ||||||
|  |          (x - x1) / (x2 - x1) * y2 | ||||||
|  |  | ||||||
|  | def query_performance(api, info, dataset, ticket): | ||||||
|  |   info = deepcopy(info) | ||||||
|  |   results, is_size_space = [], api.search_space_name == 'size' | ||||||
|  |   time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||||
|  |   time_a, arch_a = time_w_arch[0] | ||||||
|  |   time_b, arch_b = time_w_arch[1] | ||||||
|  |  | ||||||
|  |   v_acc_a, t_acc_a, _ = get_valid_test_acc(api, arch_a, dataset) | ||||||
|  |   v_acc_b, t_acc_b, _ = get_valid_test_acc(api, arch_b, dataset) | ||||||
|  |   v_acc = interplate_fn((time_a, v_acc_a), (time_b, v_acc_b), ticket) | ||||||
|  |   t_acc = interplate_fn((time_a, t_acc_a), (time_b, t_acc_b), ticket) | ||||||
|  |   # if True: | ||||||
|  |   #   interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||||
|  |   #   results.append(interplate) | ||||||
|  |   # return sum(results) / len(results) | ||||||
|  |   return v_acc, t_acc | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def show_multi_trial(search_space): | ||||||
|  |   api = create(None, search_space, fast_mode=True, verbose=False) | ||||||
|  |   def show(dataset): | ||||||
|  |     print('show {:} on {:} done.'.format(dataset, search_space)) | ||||||
|  |     xdataset, max_time = dataset.split('-T') | ||||||
|  |     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||||
|  |     for idx, (alg, data) in enumerate(alg2data.items()): | ||||||
|  |  | ||||||
|  |       valid_accs, test_accs = [], [] | ||||||
|  |       for _, x in data.items(): | ||||||
|  |         v_acc, t_acc = query_performance(api, x, xdataset, float(max_time)) | ||||||
|  |         valid_accs.append(v_acc) | ||||||
|  |         test_accs.append(t_acc) | ||||||
|  |       valid_str = '{:.2f}$\pm${:.2f}'.format(np.mean(valid_accs), np.std(valid_accs)) | ||||||
|  |       test_str = '{:.2f}$\pm${:.2f}'.format(np.mean(test_accs), np.std(test_accs)) | ||||||
|  |       print('{:} plot alg : {:10s}  | validation = {:} | test = {:}'.format(time_string(), alg, valid_str, test_str)) | ||||||
|  |   if search_space == 'tss': | ||||||
|  |     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T120000'] | ||||||
|  |   elif search_space == 'sss': | ||||||
|  |     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T60000'] | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Unknown search space: {:}'.format(search_space)) | ||||||
|  |   for dataset in datasets: | ||||||
|  |     show(dataset) | ||||||
|  |   print('{:} complete show multi-trial results.\n'.format(time_string())) | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|    |    | ||||||
|  |   show_multi_trial('tss') | ||||||
|  |   show_multi_trial('sss') | ||||||
|  |  | ||||||
|   api_tss = create(None, 'tss', fast_mode=False, verbose=False) |   api_tss = create(None, 'tss', fast_mode=False, verbose=False) | ||||||
|   resnet = '|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|' |   resnet = '|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|' | ||||||
|   resnet_index = api_tss.query_index_by_arch(resnet) |   resnet_index = api_tss.query_index_by_arch(resnet) | ||||||
|   | |||||||
| @@ -95,7 +95,7 @@ def mutate_size_func(info): | |||||||
|   return mutate_size_func |   return mutate_size_func | ||||||
|  |  | ||||||
|  |  | ||||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, dataset): | def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, use_proxy, dataset): | ||||||
|   """Algorithm for regularized evolution (i.e. aging evolution). |   """Algorithm for regularized evolution (i.e. aging evolution). | ||||||
|    |    | ||||||
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image |   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||||
| @@ -119,7 +119,10 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|   while len(population) < population_size: |   while len(population) < population_size: | ||||||
|     model = Model() |     model = Model() | ||||||
|     model.arch = random_arch() |     model.arch = random_arch() | ||||||
|  |     if use_proxy: | ||||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12') |       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12') | ||||||
|  |     else: | ||||||
|  |       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp=api.full_train_epochs) | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(model) |     population.append(model) | ||||||
|     history.append((model.accuracy, model.arch)) |     history.append((model.accuracy, model.arch)) | ||||||
| @@ -171,7 +174,11 @@ def main(xargs, api): | |||||||
|   x_start_time = time.time() |   x_start_time = time.time() | ||||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) |   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) |   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||||
|   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) |   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, | ||||||
|  |                                                                    xargs.ea_population, | ||||||
|  |                                                                    xargs.ea_sample_size, | ||||||
|  |                                                                    xargs.time_budget, | ||||||
|  |                                                                    random_arch, mutate_arch, api, xargs.use_proxy > 0, xargs.dataset) | ||||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) |   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||||
|   best_arch = max(history, key=lambda x: x[0])[1] |   best_arch = max(history, key=lambda x: x[0])[1] | ||||||
|   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) |   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) | ||||||
| @@ -187,11 +194,13 @@ if __name__ == '__main__': | |||||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") |   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') |   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||||
|   # channels and number-of-cells |   # hyperparameters for REA | ||||||
|   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') |   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') | ||||||
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') |   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||||
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') |   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||||
|   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') |   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||||
|  |   parser.add_argument('--use_proxy',          type=int,   default=1,     help='Whether to use the proxy (H0) task or not.') | ||||||
|  |   # | ||||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') |   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||||
|   # log |   # log | ||||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||||
| @@ -201,7 +210,8 @@ if __name__ == '__main__': | |||||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) |   api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||||
|  |  | ||||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), |   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), | ||||||
|                                '{:}-T{:}'.format(args.dataset, args.time_budget), 'R-EA-SS{:}'.format(args.ea_sample_size)) |                                '{:}-T{:}{:}'.format(args.dataset, args.time_budget, '' if args.use_proxy > 0 else '-FULL'), | ||||||
|  |                                'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||||
|   print('save-dir : {:}'.format(args.save_dir)) |   print('save-dir : {:}'.format(args.save_dir)) | ||||||
|   print('xargs : {:}'.format(args)) |   print('xargs : {:}'.format(args)) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -83,6 +83,7 @@ class NATSsize(NASBenchMetaAPI): | |||||||
|     self._search_space_name = 'size' |     self._search_space_name = 'size' | ||||||
|     self._fast_mode = fast_mode |     self._fast_mode = fast_mode | ||||||
|     self._archive_dir = None |     self._archive_dir = None | ||||||
|  |     self._full_train_epochs = 90 | ||||||
|     self.reset_time() |     self.reset_time() | ||||||
|     if file_path_or_dict is None: |     if file_path_or_dict is None: | ||||||
|       if self._fast_mode: |       if self._fast_mode: | ||||||
|   | |||||||
| @@ -83,6 +83,7 @@ class NATStopology(NASBenchMetaAPI): | |||||||
|     self._search_space_name = 'topology' |     self._search_space_name = 'topology' | ||||||
|     self._fast_mode = fast_mode |     self._fast_mode = fast_mode | ||||||
|     self._archive_dir = None |     self._archive_dir = None | ||||||
|  |     self._full_train_epochs = 200 | ||||||
|     self.reset_time() |     self.reset_time() | ||||||
|     if file_path_or_dict is None: |     if file_path_or_dict is None: | ||||||
|       if self._fast_mode: |       if self._fast_mode: | ||||||
|   | |||||||
| @@ -190,6 +190,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | |||||||
|   def archive_dir(self): |   def archive_dir(self): | ||||||
|     return self._archive_dir |     return self._archive_dir | ||||||
|  |  | ||||||
|  |   @property | ||||||
|  |   def full_train_epochs(self): | ||||||
|  |     return self._full_train_epochs | ||||||
|  |  | ||||||
|   def reset_archive_dir(self, archive_dir): |   def reset_archive_dir(self, archive_dir): | ||||||
|     self._archive_dir = archive_dir |     self._archive_dir = archive_dir | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user