update CVPR-2019-GDAS re-train NASNet-search-space searched models
This commit is contained in:
		| @@ -2,6 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
| @@ -50,3 +51,70 @@ class InferCell(nn.Module): | ||||
|       node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) ) | ||||
|       nodes.append( node_feature ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetInferCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats): | ||||
|     super(NASNetInferCell, self).__init__() | ||||
|     self.reduction = reduction | ||||
|     if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else             : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats) | ||||
|  | ||||
|     if not reduction: | ||||
|       nodes, concats = genotype['normal'], genotype['normal_concat'] | ||||
|     else: | ||||
|       nodes, concats = genotype['reduce'], genotype['reduce_concat'] | ||||
|     self._multiplier = len(concats) | ||||
|     self._concats = concats | ||||
|     self._steps = len(nodes) | ||||
|     self._nodes = nodes | ||||
|     self.edges = nn.ModuleDict() | ||||
|     for i, node in enumerate(nodes): | ||||
|       for in_node in node: | ||||
|         name, j = in_node[0], in_node[1] | ||||
|         stride = 2 if reduction and j < 2 else 1 | ||||
|         node_str = '{:}<-{:}'.format(i+2, j) | ||||
|         self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats) | ||||
|  | ||||
|   # [TODO] to support drop_prob in this function.. | ||||
|   def forward(self, s0, s1, unused_drop_prob): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i, node in enumerate(self._nodes): | ||||
|       clist = [] | ||||
|       for in_node in node: | ||||
|         name, j = in_node[0], in_node[1] | ||||
|         node_str = '{:}<-{:}'.format(i+2, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         clist.append( op(states[j]) ) | ||||
|       states.append( sum(clist) ) | ||||
|     return torch.cat([states[x] for x in self._concats], dim=1) | ||||
|  | ||||
|  | ||||
| class AuxiliaryHeadCIFAR(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, num_classes): | ||||
|     """assuming input size 8x8""" | ||||
|     super(AuxiliaryHeadCIFAR, self).__init__() | ||||
|     self.features = nn.Sequential( | ||||
|       nn.ReLU(inplace=True), | ||||
|       nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2 | ||||
|       nn.Conv2d(C, 128, 1, bias=False), | ||||
|       nn.BatchNorm2d(128), | ||||
|       nn.ReLU(inplace=True), | ||||
|       nn.Conv2d(128, 768, 2, bias=False), | ||||
|       nn.BatchNorm2d(768), | ||||
|       nn.ReLU(inplace=True) | ||||
|     ) | ||||
|     self.classifier = nn.Linear(768, num_classes) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.features(x) | ||||
|     x = self.classifier(x.view(x.size(0),-1)) | ||||
|     return x | ||||
|   | ||||
		Reference in New Issue
	
	Block a user