update CVPR-2019-GDAS re-train NASNet-search-space searched models
This commit is contained in:
		
							
								
								
									
										71
									
								
								lib/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								lib/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetonCIFAR(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True): | ||||
|     super(NASNetonCIFAR, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|     self.auxiliary_index = None | ||||
|     self.auxiliary_head  = None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction | ||||
|       if reduction and C_curr == C*4 and auxiliary: | ||||
|         self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) | ||||
|         self.auxiliary_index = index | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.drop_path_prob = -1 | ||||
|  | ||||
|   def update_drop_path(self, drop_path_prob): | ||||
|     self.drop_path_prob = drop_path_prob | ||||
|  | ||||
|   def auxiliary_param(self): | ||||
|     if self.auxiliary_head is None: return [] | ||||
|     else: return list( self.auxiliary_head.parameters() ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     stem_feature, logits_aux = self.stem(inputs), None | ||||
|     cell_results = [stem_feature, stem_feature] | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) | ||||
|       cell_results.append( cell_feature ) | ||||
|       if self.auxiliary_index is not None and i == self.auxiliary_index and self.training: | ||||
|         logits_aux = self.auxiliary_head( cell_results[-1] ) | ||||
|     out = self.lastact(cell_results[-1]) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     if logits_aux is None: return out, logits | ||||
|     else: return out, [logits, logits_aux] | ||||
		Reference in New Issue
	
	Block a user