Add more functions for synthetic env
This commit is contained in:
		
							
								
								
									
										230
									
								
								exps/LFNA/lfna.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										230
									
								
								exps/LFNA/lfna.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,230 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
|  | ##################################################### | ||||||
|  | # python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 | ||||||
|  | ##################################################### | ||||||
|  | import sys, time, copy, torch, random, argparse | ||||||
|  | from tqdm import tqdm | ||||||
|  | from copy import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||||
|  | if str(lib_dir) not in sys.path: | ||||||
|  |     sys.path.insert(0, str(lib_dir)) | ||||||
|  | from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||||
|  | from log_utils import time_string | ||||||
|  | from log_utils import AverageMeter, convert_secs2time | ||||||
|  |  | ||||||
|  | from utils import split_str2indexes | ||||||
|  |  | ||||||
|  | from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||||
|  | from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||||
|  | from datasets.synthetic_core import get_synthetic_env | ||||||
|  | from models.xcore import get_model | ||||||
|  | from xlayers import super_core, trunc_normal_ | ||||||
|  |  | ||||||
|  |  | ||||||
|  | from lfna_utils import lfna_setup, train_model, TimeData | ||||||
|  |  | ||||||
|  | from lfna_models_v2 import HyperNet | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(args): | ||||||
|  |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|  |     dynamic_env = env_info["dynamic_env"] | ||||||
|  |     model = get_model(**model_kwargs) | ||||||
|  |     model = model.to(args.device) | ||||||
|  |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|  |     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||||
|  |     # meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2) | ||||||
|  |     # meta_train_interval = dynamic_env.timestamp_interval | ||||||
|  |  | ||||||
|  |     shape_container = model.get_w_container().to_shape_container() | ||||||
|  |  | ||||||
|  |     # pre-train the hypernetwork | ||||||
|  |     timestamps = list( | ||||||
|  |         dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2) | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  |     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps) | ||||||
|  |     hypernet = hypernet.to(args.device) | ||||||
|  |  | ||||||
|  |     import pdb | ||||||
|  |  | ||||||
|  |     pdb.set_trace() | ||||||
|  |  | ||||||
|  |     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||||
|  |     total_bar = 16 | ||||||
|  |     task_embeds = [] | ||||||
|  |     for i in range(total_bar): | ||||||
|  |         tensor = torch.Tensor(1, args.task_dim).to(args.device) | ||||||
|  |         task_embeds.append(torch.nn.Parameter(tensor)) | ||||||
|  |     for task_embed in task_embeds: | ||||||
|  |         trunc_normal_(task_embed, std=0.02) | ||||||
|  |  | ||||||
|  |     model.train() | ||||||
|  |     hypernet.train() | ||||||
|  |  | ||||||
|  |     parameters = list(hypernet.parameters()) + task_embeds | ||||||
|  |     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||||
|  |     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) | ||||||
|  |     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|  |         optimizer, | ||||||
|  |         milestones=[ | ||||||
|  |             int(args.epochs * 0.8), | ||||||
|  |             int(args.epochs * 0.9), | ||||||
|  |         ], | ||||||
|  |         gamma=0.1, | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  |     # total_bar = env_info["total"] - 1 | ||||||
|  |     # LFNA meta-training | ||||||
|  |     loss_meter = AverageMeter() | ||||||
|  |     per_epoch_time, start_time = AverageMeter(), time.time() | ||||||
|  |     for iepoch in range(args.epochs): | ||||||
|  |  | ||||||
|  |         need_time = "Time Left: {:}".format( | ||||||
|  |             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||||
|  |         ) | ||||||
|  |         head_str = ( | ||||||
|  |             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||||
|  |             + need_time | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         losses = [] | ||||||
|  |         # for ibatch in range(args.meta_batch): | ||||||
|  |         for cur_time in range(total_bar): | ||||||
|  |             # cur_time = random.randint(0, total_bar) | ||||||
|  |             cur_task_embed = task_embeds[cur_time] | ||||||
|  |             cur_container = hypernet(cur_task_embed) | ||||||
|  |             cur_x = env_info["{:}-x".format(cur_time)].to(args.device) | ||||||
|  |             cur_y = env_info["{:}-y".format(cur_time)].to(args.device) | ||||||
|  |             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||||
|  |  | ||||||
|  |             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||||
|  |             optimizer.zero_grad() | ||||||
|  |             loss = criterion(preds, cur_dataset.y) | ||||||
|  |  | ||||||
|  |             losses.append(loss) | ||||||
|  |  | ||||||
|  |         final_loss = torch.stack(losses).mean() | ||||||
|  |         final_loss.backward() | ||||||
|  |         optimizer.step() | ||||||
|  |         lr_scheduler.step() | ||||||
|  |  | ||||||
|  |         loss_meter.update(final_loss.item()) | ||||||
|  |         if iepoch % 100 == 0: | ||||||
|  |             logger.log( | ||||||
|  |                 head_str | ||||||
|  |                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||||
|  |                     loss_meter.avg, | ||||||
|  |                     loss_meter.val, | ||||||
|  |                     min(lr_scheduler.get_last_lr()), | ||||||
|  |                     len(losses), | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |  | ||||||
|  |             save_checkpoint( | ||||||
|  |                 { | ||||||
|  |                     "hypernet": hypernet.state_dict(), | ||||||
|  |                     "task_embed": task_embed, | ||||||
|  |                     "lr_scheduler": lr_scheduler.state_dict(), | ||||||
|  |                     "iepoch": iepoch, | ||||||
|  |                 }, | ||||||
|  |                 logger.path("model"), | ||||||
|  |                 logger, | ||||||
|  |             ) | ||||||
|  |             loss_meter.reset() | ||||||
|  |         per_epoch_time.update(time.time() - start_time) | ||||||
|  |         start_time = time.time() | ||||||
|  |  | ||||||
|  |     print(model) | ||||||
|  |     print(hypernet) | ||||||
|  |  | ||||||
|  |     w_container_per_epoch = dict() | ||||||
|  |     for idx in range(0, total_bar): | ||||||
|  |         future_time = env_info["{:}-timestamp".format(idx)] | ||||||
|  |         future_x = env_info["{:}-x".format(idx)] | ||||||
|  |         future_y = env_info["{:}-y".format(idx)] | ||||||
|  |         future_container = hypernet(task_embeds[idx]) | ||||||
|  |         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||||
|  |         with torch.no_grad(): | ||||||
|  |             future_y_hat = model.forward_with_container( | ||||||
|  |                 future_x, w_container_per_epoch[idx] | ||||||
|  |             ) | ||||||
|  |             future_loss = criterion(future_y_hat, future_y) | ||||||
|  |         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||||
|  |  | ||||||
|  |     save_checkpoint( | ||||||
|  |         {"w_container_per_epoch": w_container_per_epoch}, | ||||||
|  |         logger.path(None) / "final-ckp.pth", | ||||||
|  |         logger, | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  |     logger.log("-" * 200 + "\n") | ||||||
|  |     logger.close() | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     parser = argparse.ArgumentParser(".") | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--save_dir", | ||||||
|  |         type=str, | ||||||
|  |         default="./outputs/lfna-synthetic/lfna-battle", | ||||||
|  |         help="The checkpoint directory.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--env_version", | ||||||
|  |         type=str, | ||||||
|  |         required=True, | ||||||
|  |         help="The synthetic enviornment version.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--hidden_dim", | ||||||
|  |         type=int, | ||||||
|  |         required=True, | ||||||
|  |         help="The hidden dimension.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--layer_dim", | ||||||
|  |         type=int, | ||||||
|  |         required=True, | ||||||
|  |         help="The hidden dimension.", | ||||||
|  |     ) | ||||||
|  |     ##### | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--init_lr", | ||||||
|  |         type=float, | ||||||
|  |         default=0.1, | ||||||
|  |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--meta_batch", | ||||||
|  |         type=int, | ||||||
|  |         default=64, | ||||||
|  |         help="The batch size for the meta-model", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--epochs", | ||||||
|  |         type=int, | ||||||
|  |         default=2000, | ||||||
|  |         help="The total number of epochs.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--device", | ||||||
|  |         type=str, | ||||||
|  |         default="cpu", | ||||||
|  |         help="", | ||||||
|  |     ) | ||||||
|  |     # Random Seed | ||||||
|  |     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||||
|  |     args = parser.parse_args() | ||||||
|  |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|  |         args.rand_seed = random.randint(1, 100000) | ||||||
|  |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|  |     args.task_dim = args.layer_dim | ||||||
|  |     args.save_dir = "{:}-{:}-d{:}".format( | ||||||
|  |         args.save_dir, args.env_version, args.hidden_dim | ||||||
|  |     ) | ||||||
|  |     main(args) | ||||||
							
								
								
									
										72
									
								
								exps/LFNA/lfna_models_v2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								exps/LFNA/lfna_models_v2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,72 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
|  | ##################################################### | ||||||
|  | import copy | ||||||
|  | import torch | ||||||
|  |  | ||||||
|  | import torch.nn.functional as F | ||||||
|  |  | ||||||
|  | from xlayers import super_core | ||||||
|  | from xlayers import trunc_normal_ | ||||||
|  | from models.xcore import get_model | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class HyperNet(super_core.SuperModule): | ||||||
|  |     """The hyper-network.""" | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, | ||||||
|  |         shape_container, | ||||||
|  |         layer_embeding, | ||||||
|  |         task_embedding, | ||||||
|  |         meta_timestamps, | ||||||
|  |         return_container: bool = True, | ||||||
|  |     ): | ||||||
|  |         super(HyperNet, self).__init__() | ||||||
|  |         self._shape_container = shape_container | ||||||
|  |         self._num_layers = len(shape_container) | ||||||
|  |         self._numel_per_layer = [] | ||||||
|  |         for ilayer in range(self._num_layers): | ||||||
|  |             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||||
|  |  | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_super_layer_embed", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||||
|  |         ) | ||||||
|  |         trunc_normal_(self._super_layer_embed, std=0.02) | ||||||
|  |  | ||||||
|  |         model_kwargs = dict( | ||||||
|  |             config=dict(model_type="dual_norm_mlp"), | ||||||
|  |             input_dim=layer_embeding + task_embedding, | ||||||
|  |             output_dim=max(self._numel_per_layer), | ||||||
|  |             hidden_dims=[layer_embeding * 4] * 3, | ||||||
|  |             act_cls="gelu", | ||||||
|  |             norm_cls="layer_norm_1d", | ||||||
|  |             dropout=0.1, | ||||||
|  |         ) | ||||||
|  |         import pdb | ||||||
|  |  | ||||||
|  |         pdb.set_trace() | ||||||
|  |         self._generator = get_model(**model_kwargs) | ||||||
|  |         self._return_container = return_container | ||||||
|  |         print("generator: {:}".format(self._generator)) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, task_embed): | ||||||
|  |         # task_embed = F.normalize(task_embed, dim=-1, p=2) | ||||||
|  |         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) | ||||||
|  |         layer_embed = self._super_layer_embed | ||||||
|  |         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||||
|  |  | ||||||
|  |         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||||
|  |         weights = self._generator(joint_embed) | ||||||
|  |         if self._return_container: | ||||||
|  |             weights = torch.split(weights, 1) | ||||||
|  |             return self._shape_container.translate(weights) | ||||||
|  |         else: | ||||||
|  |             return weights | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input): | ||||||
|  |         raise NotImplementedError | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) | ||||||
| @@ -55,6 +55,10 @@ class SyntheticDEnv(data.Dataset): | |||||||
|     def timestamp_interval(self): |     def timestamp_interval(self): | ||||||
|         return self._timestamp_generator.interval |         return self._timestamp_generator.interval | ||||||
|  |  | ||||||
|  |     def get_timestamp(self, index): | ||||||
|  |         index, timestamp = self._timestamp_generator[index] | ||||||
|  |         return timestamp | ||||||
|  |  | ||||||
|     def set_oracle_map(self, functor): |     def set_oracle_map(self, functor): | ||||||
|         self._oracle_map = functor |         self._oracle_map = functor | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user