Update the test codes for NAS-Bench-API
This commit is contained in:
		| @@ -40,6 +40,8 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). | ||||
|  | ||||
| ## How to Use NAS-Bench-201 | ||||
|  | ||||
| **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/master/exps/NAS-Bench-201/test-nas-api.py)**. | ||||
|  | ||||
| 1. Creating an API instance from a file: | ||||
| ``` | ||||
| from nas_201_api import NASBench201API as API | ||||
|   | ||||
| @@ -81,6 +81,244 @@ def visualize_info(api, vis_save_dir, indicator): | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|  | ||||
| def visualize_sss_info(api, dataset, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-sss-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='90') | ||||
|       train_accs.append(info['train-accuracy']) | ||||
|       test_accs.append(info['test-accuracy']) | ||||
|       if dataset == 'cifar10': | ||||
|         info = api.get_more_info(index, 'cifar10-valid', hp='90') | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   pyramid = ['8:16:32:48:64', '8:8:16:32:48', '8:8:16:16:32', '8:8:16:16:48', '8:8:16:16:64', '16:16:32:32:64', '32:32:64:64:64'] | ||||
|   pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid] | ||||
|   largest_indexes = [api.query_index_by_arch('64:64:64:64:64')] | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 250, 8500, 1300 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 24, 24 | ||||
|   # resnet_scale, resnet_alpha = 120, 0.5 | ||||
|   xscale, xalpha = 120, 0.8 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 4, figsize=figsize) | ||||
|   # ax1, ax2, ax3, ax4, ax5 = axs | ||||
|   for ax in axs: | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f')) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|   ax2, ax3, ax4, ax5 = axs | ||||
|   # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5)) | ||||
|   # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   # ax1.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax2.scatter([params[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax2.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax3.scatter([params[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax3.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax4.scatter([flops[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax4.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax5.scatter([flops[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax5.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   save_path = vis_save_dir / 'sss-{:}.png'.format(dataset) | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-tss-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='200') | ||||
|       train_accs.append(info['train-accuracy']) | ||||
|       test_accs.append(info['test-accuracy']) | ||||
|       if dataset == 'cifar10': | ||||
|         info = api.get_more_info(index, 'cifar10-valid', hp='200') | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   resnet = ['|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|'] | ||||
|   resnet_indexes = [api.query_index_by_arch(x) for x in resnet] | ||||
|   largest_indexes = [api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|')] | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 250, 8500, 1300 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 24, 24 | ||||
|   # resnet_scale, resnet_alpha = 120, 0.5 | ||||
|   xscale, xalpha = 120, 0.8 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 4, figsize=figsize) | ||||
|   # ax1, ax2, ax3, ax4, ax5 = axs | ||||
|   for ax in axs: | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f')) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|   ax2, ax3, ax4, ax5 = axs | ||||
|   # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5)) | ||||
|   # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   # ax1.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax2.scatter([params[x] for x in resnet_indexes] , [train_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax2.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax3.scatter([params[x] for x in resnet_indexes] , [test_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax3.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax4.scatter([flops[x] for x in  resnet_indexes], [train_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax4.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax5.scatter([flops[x] for x in  resnet_indexes], [test_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax5.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   save_path = vis_save_dir / 'tss-{:}.png'.format(dataset) | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| def visualize_rank_info(api, vis_save_dir, indicator): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   # print ('{:} start to visualize {:} information'.format(time_string(), api)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator) | ||||
|   cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator) | ||||
|   imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator) | ||||
|   cifar010_info = torch.load(cifar010_cache_path) | ||||
|   cifar100_info = torch.load(cifar100_cache_path) | ||||
|   imagenet_info = torch.load(imagenet_cache_path) | ||||
|   indexes       = list(range(len(cifar010_info['params']))) | ||||
|  | ||||
|   print ('{:} start to visualize relative ranking'.format(time_string())) | ||||
|  | ||||
|   dpi, width, height = 250, 3800, 1200 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 14, 14 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||
|   ax1, ax2, ax3 = axs | ||||
|  | ||||
|   def get_labels(info): | ||||
|     ord_test_indexes = sorted(indexes, key=lambda i: info['test_accs'][i]) | ||||
|     ord_valid_indexes = sorted(indexes, key=lambda i: info['valid_accs'][i]) | ||||
|     labels = [] | ||||
|     for idx in ord_test_indexes: | ||||
|       labels.append(ord_valid_indexes.index(idx)) | ||||
|     return labels | ||||
|  | ||||
|   def plot_ax(labels, ax, name): | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|       tick.label.set_rotation(90) | ||||
|     ax.set_xlim(min(indexes), max(indexes)) | ||||
|     ax.set_ylim(min(indexes), max(indexes)) | ||||
|     ax.yaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes)//3)) | ||||
|     ax.xaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes)//5)) | ||||
|     ax.scatter(indexes, labels , marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||
|     ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|     ax.scatter([-1], [-1], marker='^', s=100, c='tab:green' , label='{:} test'.format(name)) | ||||
|     ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue'  , label='{:} validation'.format(name)) | ||||
|     ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|     ax.set_xlabel('ranking on the {:} validation'.format(name), fontsize=LabelSize) | ||||
|     ax.set_ylabel('architecture ranking', fontsize=LabelSize) | ||||
|   labels = get_labels(cifar010_info) | ||||
|   plot_ax(labels, ax1, 'CIFAR-10') | ||||
|   labels = get_labels(cifar100_info) | ||||
|   plot_ax(labels, ax2, 'CIFAR-100') | ||||
|   labels = get_labels(imagenet_info) | ||||
|   plot_ax(labels, ax3, 'ImageNet-16-120') | ||||
|  | ||||
|   save_path = (vis_save_dir / '{:}-same-relative-rank.pdf'.format(indicator)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-same-relative-rank.png'.format(indicator)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
| @@ -88,6 +326,20 @@ if __name__ == '__main__': | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'tss') | ||||
|   visualize_rank_info(None, Path('output/vis-nas-bench/'), 'tss') | ||||
|   visualize_rank_info(None, Path('output/vis-nas-bench/'), 'sss') | ||||
|  | ||||
|   api201 = NASBench201API(None, verbose=True) | ||||
|   visualize_tss_info(api201, 'cifar10', Path('output/vis-nas-bench')) | ||||
|   visualize_tss_info(api201, 'cifar100', Path('output/vis-nas-bench')) | ||||
|   visualize_tss_info(api201, 'ImageNet16-120', Path('output/vis-nas-bench')) | ||||
|  | ||||
|   api301 = NASBench301API(None, verbose=True) | ||||
|   visualize_sss_info(api301, 'cifar10', Path('output/vis-nas-bench')) | ||||
|   visualize_sss_info(api301, 'cifar100', Path('output/vis-nas-bench')) | ||||
|   visualize_sss_info(api301, 'ImageNet16-120', Path('output/vis-nas-bench')) | ||||
|  | ||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'tss') | ||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'sss') | ||||
|   visualize_rank_info(None, Path('output/vis-nas-bench/'), 'tss') | ||||
|   visualize_rank_info(None, Path('output/vis-nas-bench/'), 'sss') | ||||
|   | ||||
| @@ -48,236 +48,51 @@ def test_api(api, is_301=True): | ||||
|     print('') | ||||
|   params = api.get_net_param(12, 'cifar10', None) | ||||
|  | ||||
|   # obtain the config and create the network | ||||
|   # Obtain the config and create the network | ||||
|   config = api.get_net_config(12, 'cifar10') | ||||
|   print('{:}\n'.format(config)) | ||||
|   network = get_cell_based_tiny_net(config) | ||||
|   network.load_state_dict(next(iter(params.values()))) | ||||
|  | ||||
|   # obtain the cost information | ||||
|   # Obtain the cost information | ||||
|   info = api.get_cost_info(12, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   info = api.get_latency(12, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   # count the number of architectures | ||||
|   # Count the number of architectures | ||||
|   info = api.statistics('cifar100', '12') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   # show the information of the 123-th architecture | ||||
|   # Show the information of the 123-th architecture | ||||
|   api.show(123) | ||||
|  | ||||
|   # obtain both cost and performance information | ||||
|   # Obtain both cost and performance information | ||||
|   info = api.get_more_info(1234, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   print('{:} finish testing the api : {:}'.format(time_string(), api)) | ||||
|  | ||||
|  | ||||
| def visualize_sss_info(api, dataset, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-sss-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='90') | ||||
|       train_accs.append(info['train-accuracy']) | ||||
|       test_accs.append(info['test-accuracy']) | ||||
|       if dataset == 'cifar10': | ||||
|         info = api.get_more_info(index, 'cifar10-valid', hp='90') | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   pyramid = ['8:16:32:48:64', '8:8:16:32:48', '8:8:16:16:32', '8:8:16:16:48', '8:8:16:16:64', '16:16:32:32:64', '32:32:64:64:64'] | ||||
|   pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid] | ||||
|   largest_indexes = [api.query_index_by_arch('64:64:64:64:64')] | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 250, 8500, 1300 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 24, 24 | ||||
|   # resnet_scale, resnet_alpha = 120, 0.5 | ||||
|   xscale, xalpha = 120, 0.8 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 4, figsize=figsize) | ||||
|   # ax1, ax2, ax3, ax4, ax5 = axs | ||||
|   for ax in axs: | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f')) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|   ax2, ax3, ax4, ax5 = axs | ||||
|   # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5)) | ||||
|   # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   # ax1.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax2.scatter([params[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax2.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax3.scatter([params[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax3.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax4.scatter([flops[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax4.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax5.scatter([flops[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax5.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   save_path = vis_save_dir / 'sss-{:}.png'.format(dataset) | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-tss-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='200') | ||||
|       train_accs.append(info['train-accuracy']) | ||||
|       test_accs.append(info['test-accuracy']) | ||||
|       if dataset == 'cifar10': | ||||
|         info = api.get_more_info(index, 'cifar10-valid', hp='200') | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   resnet = ['|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|'] | ||||
|   resnet_indexes = [api.query_index_by_arch(x) for x in resnet] | ||||
|   largest_indexes = [api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|')] | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 250, 8500, 1300 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 24, 24 | ||||
|   # resnet_scale, resnet_alpha = 120, 0.5 | ||||
|   xscale, xalpha = 120, 0.8 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 4, figsize=figsize) | ||||
|   # ax1, ax2, ax3, ax4, ax5 = axs | ||||
|   for ax in axs: | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f')) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|   ax2, ax3, ax4, ax5 = axs | ||||
|   # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5)) | ||||
|   # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   # ax1.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax2.scatter([params[x] for x in resnet_indexes] , [train_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax2.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax3.scatter([params[x] for x in resnet_indexes] , [test_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax3.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax4.scatter([flops[x] for x in  resnet_indexes], [train_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax4.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax5.scatter([flops[x] for x in  resnet_indexes], [test_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax5.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   save_path = vis_save_dir / 'tss-{:}.png'.format(dataset) | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| def test_issue_81_82(api): | ||||
|   results = api.query_by_index(0, 'cifar10') | ||||
|   results = api.query_by_index(0, 'cifar10-valid', hp='12') | ||||
|   results = api.query_by_index(0, 'cifar10-valid', hp='200') | ||||
|   print(results.keys()) | ||||
|   print(list(results.keys())) | ||||
|   print(results[888].get_eval('valid')) | ||||
|   print(results[888].get_eval('x-valid')) | ||||
|   result_dict = api.get_more_info(index=0, dataset='cifar10-valid', iepoch=11, hp='200', is_random=False) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   api201 = NASBench201API(os.path.join(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth'), verbose=True) | ||||
|   test_issue_81_82(api201) | ||||
|   test_api(api201, False) | ||||
|   # test_api(api201, False) | ||||
|   print ('Test {:} done'.format(api201)) | ||||
|  | ||||
|   api201 = NASBench201API(None, verbose=True) | ||||
|   test_issue_81_82(api201) | ||||
|   visualize_tss_info(api201, 'cifar10', Path('output/vis-nas-bench')) | ||||
|   visualize_tss_info(api201, 'cifar100', Path('output/vis-nas-bench')) | ||||
|   visualize_tss_info(api201, 'ImageNet16-120', Path('output/vis-nas-bench')) | ||||
|   test_api(api201, False) | ||||
|   print ('Test {:} done'.format(api201)) | ||||
|  | ||||
|   api301 = NASBench301API(None, verbose=True) | ||||
|   visualize_sss_info(api301, 'cifar10', Path('output/vis-nas-bench')) | ||||
|   visualize_sss_info(api301, 'cifar100', Path('output/vis-nas-bench')) | ||||
|   visualize_sss_info(api301, 'ImageNet16-120', Path('output/vis-nas-bench')) | ||||
|   test_api(api301, True) | ||||
|  | ||||
|   # save_dir = '{:}/visual'.format(args.save_dir) | ||||
|   # api301 = NASBench301API(None, verbose=True) | ||||
|   # test_api(api301, True) | ||||
|   | ||||
| @@ -184,17 +184,17 @@ class NASBench201API(NASBenchMetaAPI): | ||||
|     if valid_info is not None: | ||||
|       xinfo['valid-loss'] = valid_info['loss'] | ||||
|       xinfo['valid-accuracy'] = valid_info['accuracy'] | ||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total | ||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total if valid_info['all_time'] is not None else None | ||||
|       xinfo['valid-all-time'] = valid_info['all_time'] | ||||
|     if test_info is not None: | ||||
|       xinfo['test-loss'] = test_info['loss'] | ||||
|       xinfo['test-accuracy'] = test_info['accuracy'] | ||||
|       xinfo['test-per-time'] = test_info['all_time'] / total | ||||
|       xinfo['test-per-time'] = test_info['all_time'] / total if test_info['all_time'] is not None else None | ||||
|       xinfo['test-all-time'] = test_info['all_time'] | ||||
|     if valtest_info is not None: | ||||
|       xinfo['valtest-loss'] = valtest_info['loss'] | ||||
|       xinfo['valtest-accuracy'] = valtest_info['accuracy'] | ||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total | ||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total if valtest_info['all_time'] is not None else None | ||||
|       xinfo['valtest-all-time'] = valtest_info['all_time'] | ||||
|     return xinfo | ||||
|  | ||||
|   | ||||
| @@ -660,15 +660,21 @@ class ResultsCount(object): | ||||
|     """Get the evaluation information ; there could be multiple evaluation sets (identified by the 'name' argument).""" | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     if isinstance(self.eval_times,dict) and len(self.eval_times) > 0: | ||||
|       xtime = self.eval_times['{:}@{:}'.format(name,iepoch)] | ||||
|       atime = sum([self.eval_times['{:}@{:}'.format(name,i)] for i in range(iepoch+1)]) | ||||
|     else: xtime, atime = None, None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.eval_losses['{:}@{:}'.format(name,iepoch)], | ||||
|             'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)], | ||||
|             'cur_time': xtime, | ||||
|             'all_time': atime} | ||||
|     def _internal_query(xname): | ||||
|       if isinstance(self.eval_times,dict) and len(self.eval_times) > 0: | ||||
|         xtime = self.eval_times['{:}@{:}'.format(xname, iepoch)] | ||||
|         atime = sum([self.eval_times['{:}@{:}'.format(xname, i)] for i in range(iepoch+1)]) | ||||
|       else: | ||||
|         xtime, atime = None, None | ||||
|       return {'iepoch'  : iepoch, | ||||
|               'loss'    : self.eval_losses['{:}@{:}'.format(xname, iepoch)], | ||||
|               'accuracy': self.eval_acc1es['{:}@{:}'.format(xname, iepoch)], | ||||
|               'cur_time': xtime, | ||||
|               'all_time': atime} | ||||
|     if name == 'valid': | ||||
|       return _internal_query('x-valid') | ||||
|     else: | ||||
|       return _internal_query(name) | ||||
|  | ||||
|   def get_net_param(self, clone=False): | ||||
|     if clone: return copy.deepcopy(self.net_state_dict) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user