update GDAS and SETN
This commit is contained in:
		
							
								
								
									
										252
									
								
								exps/algos/DARTS-V1.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										252
									
								
								exps/algos/DARTS-V1.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,252 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.eval() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/DARTS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   #if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|   #  logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   #else: | ||||
|   #  nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|   #  geno = genotypes[total_epoch-1] | ||||
|   #  logger.log('The last model is {:}'.format(geno)) | ||||
|   #  info = nas_bench.query_by_arch( geno ) | ||||
|   #  if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|   #  else           : logger.log('{:}'.format(info)) | ||||
|   #  logger.log('-'*100) | ||||
|   #  geno = genotypes['best'] | ||||
|   #  logger.log('The best model is {:}'.format(geno)) | ||||
|   #  info = nas_bench.query_by_arch( geno ) | ||||
|   #  if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|   #  else           : logger.log('{:}'.format(info)) | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("DARTS first order") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										319
									
								
								exps/algos/DARTS-V2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										319
									
								
								exps/algos/DARTS-V2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,319 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def _concat(xs): | ||||
|   return torch.cat([x.view(-1) for x in xs]) | ||||
|  | ||||
|  | ||||
| def _hessian_vector_product(vector, network, criterion, base_inputs, base_targets, r=1e-2): | ||||
|   R = r / _concat(vector).norm() | ||||
|   for p, v in zip(network.module.get_weights(), vector): | ||||
|     p.data.add_(R, v) | ||||
|   _, logits = network(base_inputs) | ||||
|   loss = criterion(logits, base_targets) | ||||
|   grads_p = torch.autograd.grad(loss, network.module.get_alphas()) | ||||
|  | ||||
|   for p, v in zip(network.module.get_weights(), vector): | ||||
|     p.data.sub_(2*R, v) | ||||
|   _, logits = network(base_inputs) | ||||
|   loss = criterion(logits, base_targets) | ||||
|   grads_n = torch.autograd.grad(loss, network.module.get_alphas()) | ||||
|  | ||||
|   for p, v in zip(network.module.get_weights(), vector): | ||||
|     p.data.add_(R, v) | ||||
|   return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)] | ||||
|  | ||||
|  | ||||
| def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets): | ||||
|   # _compute_unrolled_model | ||||
|   _, logits = network(base_inputs) | ||||
|   loss = criterion(logits, base_targets) | ||||
|   LR, WD, momentum = w_optimizer.param_groups[0]['lr'], w_optimizer.param_groups[0]['weight_decay'], w_optimizer.param_groups[0]['momentum'] | ||||
|   with torch.no_grad(): | ||||
|     theta = _concat(network.module.get_weights()) | ||||
|     try: | ||||
|       moment = _concat(w_optimizer.state[v]['momentum_buffer'] for v in network.module.get_weights()) | ||||
|       moment = moment.mul_(momentum) | ||||
|     except: | ||||
|       moment = torch.zeros_like(theta) | ||||
|     dtheta = _concat(torch.autograd.grad(loss, network.module.get_weights())) + WD*theta | ||||
|     params = theta.sub(LR, moment+dtheta) | ||||
|   unrolled_model = deepcopy(network) | ||||
|   model_dict  = unrolled_model.state_dict() | ||||
|   new_params, offset = {}, 0 | ||||
|   for k, v in network.named_parameters(): | ||||
|     if 'arch_parameters' in k: continue | ||||
|     v_length = np.prod(v.size()) | ||||
|     new_params[k] = params[offset: offset+v_length].view(v.size()) | ||||
|     offset += v_length | ||||
|   model_dict.update(new_params) | ||||
|   unrolled_model.load_state_dict(model_dict) | ||||
|  | ||||
|   unrolled_model.zero_grad() | ||||
|   _, unrolled_logits = unrolled_model(arch_inputs) | ||||
|   unrolled_loss = criterion(unrolled_logits, arch_targets) | ||||
|   unrolled_loss.backward() | ||||
|  | ||||
|   dalpha = unrolled_model.module.arch_parameters.grad | ||||
|   vector = [v.grad.data for v in unrolled_model.module.get_weights()] | ||||
|   [implicit_grads] = _hessian_vector_product(vector, network, criterion, base_inputs, base_targets) | ||||
|    | ||||
|   dalpha.data.sub_(LR, implicit_grads.data) | ||||
|  | ||||
|   if network.module.arch_parameters.grad is None: | ||||
|     network.module.arch_parameters.grad = deepcopy( dalpha ) | ||||
|   else: | ||||
|     network.module.arch_parameters.grad.data.copy_( dalpha.data ) | ||||
|   return unrolled_loss.detach(), unrolled_logits.detach() | ||||
|    | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     a_optimizer.zero_grad() | ||||
|     arch_loss, arch_logits = backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets) | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(arch_logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|      | ||||
|     # update the weights | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.eval() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/DARTS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     min_LR    = min(w_scheduler.get_lr()) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min_LR)) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno = genotypes[total_epoch-1] | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|     geno = genotypes['best'] | ||||
|     logger.log('The best model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   """ | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("DARTS Second Order") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										224
									
								
								exps/algos/GDAS.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										224
									
								
								exps/algos/GDAS.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,224 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, _, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/GDAS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|   logger.log('search_space : {:}'.format(search_space)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     search_model.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format(epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \ | ||||
|               = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss , valid_a_top1 , valid_a_top5 )) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno = genotypes[total_epoch-1] | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|   """ | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("GDAS") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   parser.add_argument('--tau_min',            type=float,               help='The minimum tau for Gumbel') | ||||
|   parser.add_argument('--tau_max',            type=float,               help='The maximum tau for Gumbel') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										281
									
								
								exps/algos/SETN.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										281
									
								
								exps/algos/SETN.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,281 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     network.module.set_cal_mode( 'urs' ) | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     network.module.set_cal_mode( 'joint' ) | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/SETN.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     search_model.set_cal_mode('urs') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     search_model.set_cal_mode('joint') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     search_model.set_cal_mode('select') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   # sampling | ||||
|   with torch.no_grad(): | ||||
|     logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|   selected_archs = set() | ||||
|   while len(selected_archs) < xargs.select_num: | ||||
|     architecture = search_model.dync_genotype() | ||||
|     selected_archs.add( architecture ) | ||||
|   logger.log('select {:} architectures based on the learned arch-parameters'.format( len(selected_archs) )) | ||||
|  | ||||
|   best_arch, best_acc = None, -1 | ||||
|   state_dict = deepcopy( network.state_dict() ) | ||||
|   for index, arch in enumerate(selected_archs): | ||||
|     with torch.no_grad(): | ||||
|       search_model.set_cal_mode('dynamic', arch) | ||||
|       network.load_state_dict( deepcopy(state_dict) ) | ||||
|       valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('{:} [{:03d}/{:03d}] : {:125s}, loss={:.3f}, accuracy={:.3f}%'.format(time_string(), index, len(selected_archs), str(arch), valid_a_loss , valid_a_top1)) | ||||
|     if best_arch is None or best_acc < valid_a_top1: | ||||
|       best_arch, best_acc = arch, valid_a_top1 | ||||
|   logger.log('Find the best one : {:} with accuracy={:.2f}%'.format(best_arch, best_acc)) | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = TinyNASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno      = best_arch | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|   """ | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("SETN") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--select_num',         type=int,   help='The number of selected architectures to evaluate.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
		Reference in New Issue
	
	Block a user