Update NATS (sss) algorithms -- warmup
This commit is contained in:
		| @@ -1,6 +1,10 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - feature interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + GumbelSoftmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| import torch.nn as nn | ||||
| @@ -43,6 +47,7 @@ class GenericNAS301Model(nn.Module): | ||||
|     # algorithm related | ||||
|     self.register_buffer('_tau', torch.zeros(1)) | ||||
|     self._algo        = None | ||||
|     self._warmup_ratio = None | ||||
|  | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
| @@ -62,6 +67,13 @@ class GenericNAS301Model(nn.Module): | ||||
|   def set_tau(self, tau): | ||||
|     self._tau.data[:] = tau | ||||
|  | ||||
|   @property | ||||
|   def warmup_ratio(self): | ||||
|     return self._warmup_ratio | ||||
|  | ||||
|   def set_warmup_ratio(self, ratio: float): | ||||
|     self._warmup_ratio = ratio | ||||
|  | ||||
|   @property | ||||
|   def weights(self): | ||||
|     xlist = list(self._cells.parameters()) | ||||
| @@ -112,7 +124,13 @@ class GenericNAS301Model(nn.Module): | ||||
|       feature = cell(feature) | ||||
|       # apply different searching algorithms | ||||
|       idx = max(0, i-1) | ||||
|       if self._algo == 'fbv2': | ||||
|       if self._warmup_ratio is not None: | ||||
|         if random.random() < self._warmup_ratio: | ||||
|           mask = self._masks[-1] | ||||
|         else: | ||||
|           mask = self._masks[random.randint(0, len(self._masks)-1)] | ||||
|         feature = feature * mask.view(1, -1, 1, 1) | ||||
|       elif self._algo == 'fbv2': | ||||
|         weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1) | ||||
|         mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1) | ||||
|         feature = feature * mask | ||||
|   | ||||
		Reference in New Issue
	
	Block a user