Complete LFNA 1.0
This commit is contained in:
		
							
								
								
									
										190
									
								
								exps/LFNA/basic-prev.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										190
									
								
								exps/LFNA/basic-prev.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,190 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/basic-prev.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 | ||||
| # python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
|  | ||||
| from lfna_utils import lfna_setup | ||||
|  | ||||
|  | ||||
| def subsample(historical_x, historical_y, maxn=10000): | ||||
|     total = historical_x.size(0) | ||||
|     if total <= maxn: | ||||
|         return historical_x, historical_y | ||||
|     else: | ||||
|         indexes = torch.randint(low=0, high=total, size=[maxn]) | ||||
|         return historical_x[indexes], historical_y[indexes] | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|  | ||||
|     per_timestamp_time, start_time = AverageMeter(), time.time() | ||||
|     for idx in range(1, env_info["total"]): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "[{:}]".format(time_string()) | ||||
|             + " [{:04d}/{:04d}]".format(idx, env_info["total"]) | ||||
|             + " " | ||||
|             + need_time | ||||
|         ) | ||||
|         # train the same data | ||||
|         historical_x = env_info["{:}-x".format(idx - 1)] | ||||
|         historical_y = env_info["{:}-y".format(idx - 1)] | ||||
|         # build model | ||||
|         model = get_model(**model_kwargs) | ||||
|         print(model) | ||||
|         # build optimizer | ||||
|         optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) | ||||
|         criterion = torch.nn.MSELoss() | ||||
|         lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|             optimizer, | ||||
|             milestones=[ | ||||
|                 int(args.epochs * 0.25), | ||||
|                 int(args.epochs * 0.5), | ||||
|                 int(args.epochs * 0.75), | ||||
|             ], | ||||
|             gamma=0.3, | ||||
|         ) | ||||
|         train_metric = MSEMetric() | ||||
|         best_loss, best_param = None, None | ||||
|         for _iepoch in range(args.epochs): | ||||
|             preds = model(historical_x) | ||||
|             optimizer.zero_grad() | ||||
|             loss = criterion(preds, historical_y) | ||||
|             loss.backward() | ||||
|             optimizer.step() | ||||
|             lr_scheduler.step() | ||||
|             # save best | ||||
|             if best_loss is None or best_loss > loss.item(): | ||||
|                 best_loss = loss.item() | ||||
|                 best_param = copy.deepcopy(model.state_dict()) | ||||
|         model.load_state_dict(best_param) | ||||
|         model.analyze_weights() | ||||
|         with torch.no_grad(): | ||||
|             train_metric(preds, historical_y) | ||||
|         train_results = train_metric.get_info() | ||||
|  | ||||
|         metric = ComposeMetric(MSEMetric(), SaveMetric()) | ||||
|         eval_dataset = torch.utils.data.TensorDataset( | ||||
|             env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)] | ||||
|         ) | ||||
|         eval_loader = torch.utils.data.DataLoader( | ||||
|             eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 | ||||
|         ) | ||||
|         results = basic_eval_fn(eval_loader, model, metric, logger) | ||||
|         log_str = ( | ||||
|             "[{:}]".format(time_string()) | ||||
|             + " [{:04d}/{:04d}]".format(idx, env_info["total"]) | ||||
|             + " train-mse: {:.5f}, eval-mse: {:.5f}".format( | ||||
|                 train_results["mse"], results["mse"] | ||||
|             ) | ||||
|         ) | ||||
|         logger.log(log_str) | ||||
|  | ||||
|         save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( | ||||
|             idx, env_info["total"] | ||||
|         ) | ||||
|         w_container_per_epoch[idx] = model.get_w_container().no_grad_clone() | ||||
|         save_checkpoint( | ||||
|             { | ||||
|                 "model_state_dict": model.state_dict(), | ||||
|                 "model": model, | ||||
|                 "index": idx, | ||||
|                 "timestamp": env_info["{:}-timestamp".format(idx)], | ||||
|             }, | ||||
|             save_path, | ||||
|             logger, | ||||
|         ) | ||||
|         logger.log("") | ||||
|         per_timestamp_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the last timestamp.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/use-prev-timestamp", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--batch_size", | ||||
|         type=int, | ||||
|         default=512, | ||||
|         help="The batch size", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=300, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--workers", | ||||
|         type=int, | ||||
|         default=4, | ||||
|         help="The number of data loading workers (default: 4)", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -1,6 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna.py --env_version v1 --workers 0 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| @@ -156,19 +157,61 @@ def main(args): | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     # meta-training | ||||
|     meta_model.load_best() | ||||
|     eval_env = env_info["dynamic_env"] | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, total_bar): | ||||
|     for idx in range(args.seq_length, env_info["total"]): | ||||
|         # build-timestamp | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         future_container = hypernet(task_embeds[idx]) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         time_seqs = [] | ||||
|         for iseq in range(args.seq_length): | ||||
|             time_seqs.append(future_time - iseq * eval_env.timestamp_interval) | ||||
|         time_seqs.reverse() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = model.forward_with_container( | ||||
|             meta_model.eval() | ||||
|             base_model.eval() | ||||
|             time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device) | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
|             w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|             # evaluation | ||||
|             future_x = env_info["{:}-x".format(idx)] | ||||
|             future_y = env_info["{:}-y".format(idx)] | ||||
|             future_y_hat = base_model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|             logger.log( | ||||
|                 "meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) | ||||
|             ) | ||||
|  | ||||
|         # creating the new meta-time-embedding | ||||
|         distance = meta_model.get_closest_meta_distance(future_time) | ||||
|         if distance < eval_env.timestamp_interval: | ||||
|             continue | ||||
|         # | ||||
|         new_param = meta_model.create_meta_embed() | ||||
|         optimizer = torch.optim.Adam( | ||||
|             [new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|         ) | ||||
|         meta_model.replace_append_learnt(torch.Tensor([future_time]), new_param) | ||||
|         meta_model.eval() | ||||
|         base_model.train() | ||||
|         for iepoch in range(args.epochs): | ||||
|             optimizer.zero_grad() | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
|             future_y_hat = base_model.forward_with_container(future_x, future_container) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|             future_loss.backward() | ||||
|             optimizer.step() | ||||
|         logger.log( | ||||
|             "post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) | ||||
|         ) | ||||
|         with torch.no_grad(): | ||||
|             meta_model.replace_append_learnt(None, None) | ||||
|             meta_model.append_fixed(torch.Tensor([future_time]), new_param) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
| @@ -216,7 +259,7 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.01, | ||||
|         default=0.005, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
| @@ -235,7 +278,7 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=50, | ||||
|         default=25, | ||||
|         help="The maximum epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
| @@ -256,7 +299,12 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}_{:}_{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim, args.layer_dim, args.time_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}_{:}_{:}-e{:}".format( | ||||
|         args.save_dir, | ||||
|         args.env_version, | ||||
|         args.hidden_dim, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
|         args.epochs, | ||||
|     ) | ||||
|     main(args) | ||||
|   | ||||
| @@ -17,7 +17,7 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|     def __init__( | ||||
|         self, | ||||
|         shape_container, | ||||
|         layer_embeding, | ||||
|         layer_embedding, | ||||
|         time_embedding, | ||||
|         meta_timestamps, | ||||
|         mha_depth: int = 2, | ||||
| @@ -33,13 +33,16 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "_super_layer_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||
|             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embedding)), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "_super_meta_embed", | ||||
|             torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)), | ||||
|         ) | ||||
|         self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps)) | ||||
|         self._time_embed_dim = time_embedding | ||||
|         self._append_meta_embed = dict(fixed=None, learnt=None) | ||||
|         self._append_meta_timestamps = dict(fixed=None, learnt=None) | ||||
|  | ||||
|         # build transformer | ||||
|         layers = [] | ||||
| @@ -60,9 +63,9 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             config=dict(model_type="dual_norm_mlp"), | ||||
|             input_dim=layer_embeding + time_embedding, | ||||
|             input_dim=layer_embedding + time_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[(layer_embeding + time_embedding) * 2] * 3, | ||||
|             hidden_dims=[(layer_embedding + time_embedding) * 2] * 3, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|             dropout=dropout, | ||||
| @@ -82,21 +85,68 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|             std=0.02, | ||||
|         ) | ||||
|  | ||||
|     @property | ||||
|     def meta_timestamps(self): | ||||
|         meta_timestamps = [self._meta_timestamps] | ||||
|         for key in ("fixed", "learnt"): | ||||
|             if self._append_meta_timestamps[key] is not None: | ||||
|                 meta_timestamps.append(self._append_meta_timestamps[key]) | ||||
|         return torch.cat(meta_timestamps) | ||||
|  | ||||
|     @property | ||||
|     def super_meta_embed(self): | ||||
|         meta_embed = [self._super_meta_embed] | ||||
|         for key in ("fixed", "learnt"): | ||||
|             if self._append_meta_embed[key] is not None: | ||||
|                 meta_embed.append(self._append_meta_embed[key]) | ||||
|         return torch.cat(meta_embed) | ||||
|  | ||||
|     def create_meta_embed(self): | ||||
|         param = torch.nn.Parameter(torch.Tensor(1, self._time_embed_dim)) | ||||
|         trunc_normal_(param, std=0.02) | ||||
|         return param.to(self._super_meta_embed.device) | ||||
|  | ||||
|     def get_closest_meta_distance(self, timestamp): | ||||
|         with torch.no_grad(): | ||||
|             distances = torch.abs(self.meta_timestamps - timestamp) | ||||
|             return torch.min(distances).item() | ||||
|  | ||||
|     def replace_append_learnt(self, timestamp, meta_embed): | ||||
|         self._append_meta_embed["learnt"] = meta_embed | ||||
|         self._append_meta_timestamps["learnt"] = timestamp | ||||
|  | ||||
|     def append_fixed(self, timestamp, meta_embed): | ||||
|         with torch.no_grad(): | ||||
|             timestamp, meta_embed = timestamp.clone(), meta_embed.clone() | ||||
|             if self._append_meta_timestamps["fixed"] is None: | ||||
|                 self._append_meta_timestamps["fixed"] = timestamp | ||||
|             else: | ||||
|                 self._append_meta_timestamps["fixed"] = torch.cat( | ||||
|                     (self._append_meta_timestamps["fixed"], timestamp), dim=0 | ||||
|                 ) | ||||
|             if self._append_meta_embed["fixed"] is None: | ||||
|                 self._append_meta_embed["fixed"] = meta_embed | ||||
|             else: | ||||
|                 self._append_meta_embed["fixed"] = torch.cat( | ||||
|                     (self._append_meta_embed["fixed"], meta_embed), dim=0 | ||||
|                 ) | ||||
|  | ||||
|     def forward_raw(self, timestamps): | ||||
|         # timestamps is a batch of sequence of timestamps | ||||
|         batch, seq = timestamps.shape | ||||
|         timestamps = timestamps.unsqueeze(dim=-1) | ||||
|         meta_timestamps = self._meta_timestamps.view(1, 1, -1) | ||||
|         meta_timestamps = self.meta_timestamps.view(1, 1, -1) | ||||
|         time_diffs = timestamps - meta_timestamps | ||||
|         time_match_v, time_match_i = torch.min(torch.abs(time_diffs), dim=-1) | ||||
|         # select corresponding meta-knowledge | ||||
|         meta_match = torch.index_select( | ||||
|             self._super_meta_embed, dim=0, index=time_match_i.view(-1) | ||||
|             self.super_meta_embed, dim=0, index=time_match_i.view(-1) | ||||
|         ) | ||||
|         meta_match = meta_match.view(batch, seq, -1) | ||||
|         # create the probability | ||||
|         time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1) | ||||
|         time_probs[:, -1, :] = 0 | ||||
|         if self.training: | ||||
|             time_probs[:, -1, :] = 0 | ||||
|         unknown_token = self._unknown_token.view(1, 1, -1) | ||||
|         raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user