Sync NATS-Bench's d11018d
This commit is contained in:
parent
c7a54fd08b
commit
bc0ac65882
@ -3,15 +3,18 @@
|
|||||||
##############################################################################
|
##############################################################################
|
||||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||||
##############################################################################
|
##############################################################################
|
||||||
# The official Application Programming Interface (API) for NATS-Bench. #
|
"""The official Application Programming Interface (API) for NATS-Bench."""
|
||||||
##############################################################################
|
from nats_bench.api_size import NATSsize
|
||||||
from .api_utils import pickle_save, pickle_load
|
from nats_bench.api_topology import NATStopology
|
||||||
from .api_utils import ArchResults, ResultsCount
|
from nats_bench.api_utils import ArchResults
|
||||||
from .api_topology import NATStopology
|
from nats_bench.api_utils import pickle_load
|
||||||
from .api_size import NATSsize
|
from nats_bench.api_utils import pickle_save
|
||||||
|
from nats_bench.api_utils import ResultsCount
|
||||||
|
|
||||||
|
|
||||||
NATS_BENCH_API_VERSIONs = ['v1.0'] # [2020.08.31]
|
NATS_BENCH_API_VERSIONs = ['v1.0'] # [2020.08.31]
|
||||||
|
NATS_BENCH_SSS_NAMEs = ('sss', 'size')
|
||||||
|
NATS_BENCH_TSS_NAMEs = ('tss', 'topology')
|
||||||
|
|
||||||
|
|
||||||
def version():
|
def version():
|
||||||
@ -24,13 +27,43 @@ def create(file_path_or_dict, search_space, fast_mode=False, verbose=True):
|
|||||||
Args:
|
Args:
|
||||||
file_path_or_dict: None or a file path or a directory path.
|
file_path_or_dict: None or a file path or a directory path.
|
||||||
search_space: This is a string indicates the search space in NATS-Bench.
|
search_space: This is a string indicates the search space in NATS-Bench.
|
||||||
fast_mode: If True, we will not load all the data at initialization, instead, the data for each candidate architecture will be loaded when quering it;
|
fast_mode: If True, we will not load all the data at initialization,
|
||||||
If False, we will load all the data during initialization.
|
instead, the data for each candidate architecture will be loaded when
|
||||||
|
quering it; If False, we will load all the data during initialization.
|
||||||
verbose: This is a flag to indicate whether log additional information.
|
verbose: This is a flag to indicate whether log additional information.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If not find the matched serach space description.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The created NATS-Bench API.
|
||||||
"""
|
"""
|
||||||
if search_space in ['tss', 'topology']:
|
if search_space in NATS_BENCH_TSS_NAMEs:
|
||||||
return NATStopology(file_path_or_dict, fast_mode, verbose)
|
return NATStopology(file_path_or_dict, fast_mode, verbose)
|
||||||
elif search_space in ['sss', 'size']:
|
elif search_space in NATS_BENCH_SSS_NAMEs:
|
||||||
return NATSsize(file_path_or_dict, fast_mode, verbose)
|
return NATSsize(file_path_or_dict, fast_mode, verbose)
|
||||||
else:
|
else:
|
||||||
raise ValueError('invalid search space : {:}'.format(search_space))
|
raise ValueError('invalid search space : {:}'.format(search_space))
|
||||||
|
|
||||||
|
|
||||||
|
def search_space_info(main_tag, aux_tag):
|
||||||
|
"""Obtain the search space information."""
|
||||||
|
nats_sss = dict(candidates=[8, 16, 24, 32, 40, 48, 56, 64],
|
||||||
|
num_layers=5)
|
||||||
|
nats_tss = dict(op_names=['none', 'skip_connect',
|
||||||
|
'nor_conv_1x1', 'nor_conv_3x3',
|
||||||
|
'avg_pool_3x3'],
|
||||||
|
num_nodes=4)
|
||||||
|
if main_tag == 'nats-bench':
|
||||||
|
if aux_tag in NATS_BENCH_SSS_NAMEs:
|
||||||
|
return nats_sss
|
||||||
|
elif aux_tag in NATS_BENCH_TSS_NAMEs:
|
||||||
|
return nats_tss
|
||||||
|
else:
|
||||||
|
raise ValueError('Unknown auxiliary tag: {:}'.format(aux_tag))
|
||||||
|
elif main_tag == 'nas-bench-201':
|
||||||
|
if aux_tag is not None:
|
||||||
|
raise ValueError('For NAS-Bench-201, the auxiliary tag should be None.')
|
||||||
|
return nats_tss
|
||||||
|
else:
|
||||||
|
raise ValueError('Unknown main tag: {:}'.format(main_tag))
|
||||||
|
@ -1,65 +1,84 @@
|
|||||||
#####################################################
|
#####################################################
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
||||||
##############################################################################
|
##############################################################################
|
||||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||||
#####################################################################################
|
##############################################################################
|
||||||
# The history of benchmark files (the name is NATS-sss-[version]-[md5].pickle.pbz2) #
|
# The history of benchmark files are as follows, #
|
||||||
# [2020.08.31] NATS-sss-v1_0-50262.pickle.pbz2 #
|
# where the format is (the name is NATS-sss-[version]-[md5].pickle.pbz2) #
|
||||||
#####################################################################################
|
# [2020.08.31] NATS-sss-v1_0-50262.pickle.pbz2 #
|
||||||
import os, copy, random, numpy as np
|
##############################################################################
|
||||||
from typing import List, Text, Union, Dict, Optional
|
# pylint: disable=line-too-long
|
||||||
from collections import OrderedDict, defaultdict
|
"""The API for size search space in NATS-Bench."""
|
||||||
from .api_utils import time_string
|
import collections
|
||||||
from .api_utils import pickle_load
|
import copy
|
||||||
from .api_utils import ArchResults
|
import os
|
||||||
from .api_utils import NASBenchMetaAPI
|
import random
|
||||||
from .api_utils import remap_dataset_set_names
|
from typing import Dict, Optional, Text, Union, Any
|
||||||
from .api_utils import nats_is_dir
|
|
||||||
from .api_utils import nats_is_file
|
from nats_bench.api_utils import ArchResults
|
||||||
from .api_utils import PICKLE_EXT
|
from nats_bench.api_utils import NASBenchMetaAPI
|
||||||
|
from nats_bench.api_utils import nats_is_dir
|
||||||
|
from nats_bench.api_utils import nats_is_file
|
||||||
|
from nats_bench.api_utils import PICKLE_EXT
|
||||||
|
from nats_bench.api_utils import pickle_load
|
||||||
|
from nats_bench.api_utils import time_string
|
||||||
|
|
||||||
|
|
||||||
ALL_BASE_NAMES = ['NATS-sss-v1_0-50262']
|
ALL_BASE_NAMES = ['NATS-sss-v1_0-50262']
|
||||||
|
|
||||||
|
|
||||||
def print_information(information, extra_info=None, show=False):
|
def print_information(information, extra_info=None, show=False):
|
||||||
|
"""print out the information of a given ArchResults."""
|
||||||
dataset_names = information.get_dataset_names()
|
dataset_names = information.get_dataset_names()
|
||||||
strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
|
strings = [
|
||||||
|
information.arch_str,
|
||||||
|
'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)
|
||||||
|
]
|
||||||
|
|
||||||
def metric2str(loss, acc):
|
def metric2str(loss, acc):
|
||||||
return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
|
return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
|
||||||
|
|
||||||
for ida, dataset in enumerate(dataset_names):
|
for dataset in dataset_names:
|
||||||
metric = information.get_compute_costs(dataset)
|
metric = information.get_compute_costs(dataset)
|
||||||
flop, param, latency = metric['flops'], metric['params'], metric['latency']
|
flop, param, latency = metric['flops'], metric['params'], metric['latency']
|
||||||
str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
|
str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(
|
||||||
|
dataset, flop, param,
|
||||||
|
'{:.2f}'.format(latency *
|
||||||
|
1000) if latency is not None and latency > 0 else None)
|
||||||
train_info = information.get_metrics(dataset, 'train')
|
train_info = information.get_metrics(dataset, 'train')
|
||||||
if dataset == 'cifar10-valid':
|
if dataset == 'cifar10-valid':
|
||||||
valid_info = information.get_metrics(dataset, 'x-valid')
|
valid_info = information.get_metrics(dataset, 'x-valid')
|
||||||
test__info = information.get_metrics(dataset, 'ori-test')
|
test__info = information.get_metrics(dataset, 'ori-test')
|
||||||
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(
|
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(
|
||||||
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||||
metric2str(valid_info['loss'], valid_info['accuracy']),
|
metric2str(valid_info['loss'], valid_info['accuracy']),
|
||||||
metric2str(test__info['loss'], test__info['accuracy']))
|
metric2str(test__info['loss'], test__info['accuracy']))
|
||||||
elif dataset == 'cifar10':
|
elif dataset == 'cifar10':
|
||||||
test__info = information.get_metrics(dataset, 'ori-test')
|
test__info = information.get_metrics(dataset, 'ori-test')
|
||||||
str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
|
str2 = '{:14s} train : [{:}], test : [{:}]'.format(
|
||||||
|
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||||
|
metric2str(test__info['loss'], test__info['accuracy']))
|
||||||
else:
|
else:
|
||||||
valid_info = information.get_metrics(dataset, 'x-valid')
|
valid_info = information.get_metrics(dataset, 'x-valid')
|
||||||
test__info = information.get_metrics(dataset, 'x-test')
|
test__info = information.get_metrics(dataset, 'x-test')
|
||||||
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
|
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(
|
||||||
|
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||||
|
metric2str(valid_info['loss'], valid_info['accuracy']),
|
||||||
|
metric2str(test__info['loss'], test__info['accuracy']))
|
||||||
strings += [str1, str2]
|
strings += [str1, str2]
|
||||||
if show: print('\n'.join(strings))
|
if show: print('\n'.join(strings))
|
||||||
return strings
|
return strings
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This is the class for the API of size search space in NATS-Bench.
|
|
||||||
"""
|
|
||||||
class NATSsize(NASBenchMetaAPI):
|
class NATSsize(NASBenchMetaAPI):
|
||||||
|
"""This is the class for the API of size search space in NATS-Bench."""
|
||||||
|
|
||||||
""" The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
|
def __init__(self,
|
||||||
def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, fast_mode: bool=False, verbose: bool=True):
|
file_path_or_dict: Optional[Union[Text, Dict[Text, Any]]] = None,
|
||||||
self.ALL_BASE_NAMES = ALL_BASE_NAMES
|
fast_mode: bool = False,
|
||||||
|
verbose: bool = True):
|
||||||
|
"""The initialization function that takes the dataset file path (or a dict loaded from that path) as input."""
|
||||||
|
self._all_base_names = ALL_BASE_NAMES
|
||||||
self.filename = None
|
self.filename = None
|
||||||
self._search_space_name = 'size'
|
self._search_space_name = 'size'
|
||||||
self._fast_mode = fast_mode
|
self._fast_mode = fast_mode
|
||||||
@ -67,25 +86,36 @@ class NATSsize(NASBenchMetaAPI):
|
|||||||
self.reset_time()
|
self.reset_time()
|
||||||
if file_path_or_dict is None:
|
if file_path_or_dict is None:
|
||||||
if self._fast_mode:
|
if self._fast_mode:
|
||||||
self._archive_dir = os.path.join(os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1]))
|
self._archive_dir = os.path.join(
|
||||||
|
os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1]))
|
||||||
else:
|
else:
|
||||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], '{:}.{:}'.format(ALL_BASE_NAMES[-1], PICKLE_EXT))
|
file_path_or_dict = os.path.join(
|
||||||
print ('{:} Try to use the default NATS-Bench (size) path from fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict))
|
os.environ['TORCH_HOME'], '{:}.{:}'.format(
|
||||||
|
ALL_BASE_NAMES[-1], PICKLE_EXT))
|
||||||
|
print('{:} Try to use the default NATS-Bench (size) path from '
|
||||||
|
'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode,
|
||||||
|
file_path_or_dict))
|
||||||
if isinstance(file_path_or_dict, str):
|
if isinstance(file_path_or_dict, str):
|
||||||
file_path_or_dict = str(file_path_or_dict)
|
file_path_or_dict = str(file_path_or_dict)
|
||||||
if verbose:
|
if verbose:
|
||||||
print('{:} Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode))
|
print('{:} Try to create the NATS-Bench (size) api '
|
||||||
if not nats_is_file(file_path_or_dict) and not nats_is_dir(file_path_or_dict):
|
'from {:} with fast_mode={:}'.format(
|
||||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
time_string(), file_path_or_dict, fast_mode))
|
||||||
|
if not nats_is_file(file_path_or_dict) and not nats_is_dir(
|
||||||
|
file_path_or_dict):
|
||||||
|
raise ValueError('{:} is neither a file or a dir.'.format(
|
||||||
|
file_path_or_dict))
|
||||||
self.filename = os.path.basename(file_path_or_dict)
|
self.filename = os.path.basename(file_path_or_dict)
|
||||||
if fast_mode:
|
if fast_mode:
|
||||||
if nats_is_file(file_path_or_dict):
|
if nats_is_file(file_path_or_dict):
|
||||||
raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict))
|
raise ValueError('fast_mode={:} must feed the path for directory '
|
||||||
|
': {:}'.format(fast_mode, file_path_or_dict))
|
||||||
else:
|
else:
|
||||||
self._archive_dir = file_path_or_dict
|
self._archive_dir = file_path_or_dict
|
||||||
else:
|
else:
|
||||||
if nats_is_dir(file_path_or_dict):
|
if nats_is_dir(file_path_or_dict):
|
||||||
raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict))
|
raise ValueError('fast_mode={:} must feed the path for file '
|
||||||
|
': {:}'.format(fast_mode, file_path_or_dict))
|
||||||
else:
|
else:
|
||||||
file_path_or_dict = pickle_load(file_path_or_dict)
|
file_path_or_dict = pickle_load(file_path_or_dict)
|
||||||
elif isinstance(file_path_or_dict, dict):
|
elif isinstance(file_path_or_dict, dict):
|
||||||
@ -93,68 +123,95 @@ class NATSsize(NASBenchMetaAPI):
|
|||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
if isinstance(file_path_or_dict, dict):
|
if isinstance(file_path_or_dict, dict):
|
||||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
for key in keys:
|
||||||
|
if key not in file_path_or_dict:
|
||||||
|
raise ValueError('Can not find key[{:}] in the dict'.format(key))
|
||||||
self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs'])
|
self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs'])
|
||||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
# NOTE(xuanyidong): This is a dict mapping each architecture to a dict,
|
||||||
self.arch2infos_dict = OrderedDict()
|
# where the key is #epochs and the value is ArchResults
|
||||||
|
self.arch2infos_dict = collections.OrderedDict()
|
||||||
self._avaliable_hps = set()
|
self._avaliable_hps = set()
|
||||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||||
all_infos = file_path_or_dict['arch2infos'][xkey]
|
all_infos = file_path_or_dict['arch2infos'][xkey]
|
||||||
hp2archres = OrderedDict()
|
hp2archres = collections.OrderedDict()
|
||||||
for hp_key, results in all_infos.items():
|
for hp_key, results in all_infos.items():
|
||||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||||
self.arch2infos_dict[xkey] = hp2archres
|
self.arch2infos_dict[xkey] = hp2archres
|
||||||
self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes'])
|
self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes'])
|
||||||
elif self.archive_dir is not None:
|
elif self.archive_dir is not None:
|
||||||
benchmark_meta = pickle_load('{:}/meta.{:}'.format(self.archive_dir, PICKLE_EXT))
|
benchmark_meta = pickle_load('{:}/meta.{:}'.format(
|
||||||
|
self.archive_dir, PICKLE_EXT))
|
||||||
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
||||||
self.arch2infos_dict = OrderedDict()
|
self.arch2infos_dict = collections.OrderedDict()
|
||||||
self._avaliable_hps = set()
|
self._avaliable_hps = set()
|
||||||
self.evaluated_indexes = set()
|
self.evaluated_indexes = set()
|
||||||
else:
|
else:
|
||||||
raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir must be set'.format(type(file_path_or_dict)))
|
raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir '
|
||||||
|
'must be set'.format(type(file_path_or_dict)))
|
||||||
self.archstr2index = {}
|
self.archstr2index = {}
|
||||||
for idx, arch in enumerate(self.meta_archs):
|
for idx, arch in enumerate(self.meta_archs):
|
||||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
if arch in self.archstr2index:
|
||||||
|
raise ValueError('This [{:}]-th arch {:} already in the '
|
||||||
|
'dict ({:}).'.format(
|
||||||
|
idx, arch, self.archstr2index[arch]))
|
||||||
self.archstr2index[arch] = idx
|
self.archstr2index[arch] = idx
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print('{:} Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format(
|
print('{:} Create NATS-Bench (size) done with {:}/{:} architectures '
|
||||||
time_string(), len(self.evaluated_indexes), len(self.meta_archs)))
|
'avaliable.'.format(time_string(),
|
||||||
|
len(self.evaluated_indexes),
|
||||||
|
len(self.meta_archs)))
|
||||||
|
|
||||||
def query_info_str_by_arch(self, arch, hp: Text='12'):
|
def query_info_str_by_arch(self, arch, hp: Text = '12'):
|
||||||
""" This function is used to query the information of a specific architecture
|
"""Query the information of a specific architecture.
|
||||||
'arch' can be an architecture index or an architecture string
|
|
||||||
When hp=01, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/01E.config'
|
Args:
|
||||||
When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config'
|
arch: it can be an architecture index or an architecture string.
|
||||||
When hp=90, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/90E.config'
|
|
||||||
The difference between these three configurations are the number of training epochs.
|
hp: the hyperparamete indicator, could be 01, 12, or 90. The difference
|
||||||
|
between these three configurations are the number of training epochs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
ArchResults instance
|
||||||
"""
|
"""
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp))
|
print('{:} Call query_info_str_by_arch with arch={:}'
|
||||||
|
'and hp={:}'.format(time_string(), arch, hp))
|
||||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||||
|
|
||||||
def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True):
|
def get_more_info(self,
|
||||||
"""This function will return the metric for the `index`-th architecture
|
index,
|
||||||
`dataset` indicates the dataset:
|
dataset,
|
||||||
|
iepoch=None,
|
||||||
|
hp: Text = '12',
|
||||||
|
is_random: bool = True):
|
||||||
|
"""Return the metric for the `index`-th architecture.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index: the architecture index.
|
||||||
|
dataset:
|
||||||
'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
|
'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
|
||||||
'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
|
'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
|
||||||
'cifar100' : using the proposed train set of CIFAR-100 as the training set
|
'cifar100' : using the proposed train set of CIFAR-100 as the training set
|
||||||
'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
|
'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
|
||||||
`iepoch` indicates the index of training epochs from 0 to 11/199.
|
iepoch: the index of training epochs from 0 to 11/199.
|
||||||
When iepoch=None, it will return the metric for the last training epoch
|
When iepoch=None, it will return the metric for the last training epoch
|
||||||
When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
|
When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
|
||||||
`hp` indicates different hyper-parameters for training
|
hp: indicates different hyper-parameters for training
|
||||||
When hp=01, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 01 epochs
|
When hp=01, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 01 epochs
|
||||||
When hp=12, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 12 epochs
|
When hp=12, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 12 epochs
|
||||||
When hp=90, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 90 epochs
|
When hp=90, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 90 epochs
|
||||||
`is_random`
|
is_random:
|
||||||
When is_random=True, the performance of a random architecture will be returned
|
When is_random=True, the performance of a random architecture will be returned
|
||||||
When is_random=False, the performanceo of all trials will be averaged.
|
When is_random=False, the performanceo of all trials will be averaged.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
a dict, where key is the metric name and value is its value.
|
||||||
"""
|
"""
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(
|
print('{:} Call the get_more_info function with index={:}, dataset={:}, '
|
||||||
time_string(), index, dataset, iepoch, hp, is_random))
|
'iepoch={:}, hp={:}, and is_random={:}.'.format(
|
||||||
|
time_string(), index, dataset, iepoch, hp, is_random))
|
||||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||||
self._prepare_info(index)
|
self._prepare_info(index)
|
||||||
if index not in self.arch2infos_dict:
|
if index not in self.arch2infos_dict:
|
||||||
@ -165,38 +222,47 @@ class NATSsize(NASBenchMetaAPI):
|
|||||||
seeds = archresult.get_dataset_seeds(dataset)
|
seeds = archresult.get_dataset_seeds(dataset)
|
||||||
is_random = random.choice(seeds)
|
is_random = random.choice(seeds)
|
||||||
# collect the training information
|
# collect the training information
|
||||||
train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
|
train_info = archresult.get_metrics(
|
||||||
|
dataset, 'train', iepoch=iepoch, is_random=is_random)
|
||||||
total = train_info['iepoch'] + 1
|
total = train_info['iepoch'] + 1
|
||||||
xinfo = {'train-loss' : train_info['loss'],
|
xinfo = {
|
||||||
'train-accuracy': train_info['accuracy'],
|
'train-loss': train_info['loss'],
|
||||||
'train-per-time': train_info['all_time'] / total,
|
'train-accuracy': train_info['accuracy'],
|
||||||
'train-all-time': train_info['all_time']}
|
'train-per-time': train_info['all_time'] / total,
|
||||||
|
'train-all-time': train_info['all_time']
|
||||||
|
}
|
||||||
# collect the evaluation information
|
# collect the evaluation information
|
||||||
if dataset == 'cifar10-valid':
|
if dataset == 'cifar10-valid':
|
||||||
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
valid_info = archresult.get_metrics(
|
||||||
|
dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
||||||
try:
|
try:
|
||||||
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
test_info = archresult.get_metrics(
|
||||||
except:
|
dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||||
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
test_info = None
|
test_info = None
|
||||||
valtest_info = None
|
valtest_info = None
|
||||||
else:
|
else:
|
||||||
try: # collect results on the proposed test set
|
try: # collect results on the proposed test set
|
||||||
if dataset == 'cifar10':
|
if dataset == 'cifar10':
|
||||||
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
test_info = archresult.get_metrics(
|
||||||
|
dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||||
else:
|
else:
|
||||||
test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
|
test_info = archresult.get_metrics(
|
||||||
except:
|
dataset, 'x-test', iepoch=iepoch, is_random=is_random)
|
||||||
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
test_info = None
|
test_info = None
|
||||||
try: # collect results on the proposed validation set
|
try: # collect results on the proposed validation set
|
||||||
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
valid_info = archresult.get_metrics(
|
||||||
except:
|
dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
||||||
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
valid_info = None
|
valid_info = None
|
||||||
try:
|
try:
|
||||||
if dataset != 'cifar10':
|
if dataset != 'cifar10':
|
||||||
valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
valtest_info = archresult.get_metrics(
|
||||||
|
dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||||
else:
|
else:
|
||||||
valtest_info = None
|
valtest_info = None
|
||||||
except:
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
valtest_info = None
|
valtest_info = None
|
||||||
if valid_info is not None:
|
if valid_info is not None:
|
||||||
xinfo['valid-loss'] = valid_info['loss']
|
xinfo['valid-loss'] = valid_info['loss']
|
||||||
@ -216,11 +282,5 @@ class NATSsize(NASBenchMetaAPI):
|
|||||||
return xinfo
|
return xinfo
|
||||||
|
|
||||||
def show(self, index: int = -1) -> None:
|
def show(self, index: int = -1) -> None:
|
||||||
"""
|
"""Print the information of a specific (or all) architecture(s)."""
|
||||||
This function will print the information of a specific (or all) architecture(s).
|
|
||||||
|
|
||||||
:param index: If the index < 0: it will loop for all architectures and print their information one by one.
|
|
||||||
else: it will print the information of the 'index'-th architecture.
|
|
||||||
:return: nothing
|
|
||||||
"""
|
|
||||||
self._show(index, print_information)
|
self._show(index, print_information)
|
||||||
|
59
lib/nats_bench/api_test.py
Normal file
59
lib/nats_bench/api_test.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
##############################################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 ##########################
|
||||||
|
##############################################################################
|
||||||
|
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||||
|
##############################################################################
|
||||||
|
"""This file is used to quickly test the API."""
|
||||||
|
import random
|
||||||
|
|
||||||
|
from nats_bench.api_size import NATSsize
|
||||||
|
from nats_bench.api_topology import NATStopology
|
||||||
|
|
||||||
|
|
||||||
|
def test_nats_bench_tss(benchmark_dir):
|
||||||
|
return test_nats_bench(benchmark_dir, True)
|
||||||
|
|
||||||
|
|
||||||
|
def test_nats_bench_sss(benchmark_dir):
|
||||||
|
return test_nats_bench(benchmark_dir, False)
|
||||||
|
|
||||||
|
|
||||||
|
def test_nats_bench(benchmark_dir, is_tss, verbose=False):
|
||||||
|
if is_tss:
|
||||||
|
api = NATStopology(benchmark_dir, True, verbose)
|
||||||
|
else:
|
||||||
|
api = NATSsize(benchmark_dir, True, verbose)
|
||||||
|
|
||||||
|
test_indexes = [random.randint(0, len(api) - 1) for _ in range(10)]
|
||||||
|
key2dataset = {'cifar10': 'CIFAR-10',
|
||||||
|
'cifar100': 'CIFAR-100',
|
||||||
|
'ImageNet16-120': 'ImageNet16-120'}
|
||||||
|
|
||||||
|
for index in test_indexes:
|
||||||
|
print('\n\nEvaluate the {:5d}-th architecture.'.format(index))
|
||||||
|
|
||||||
|
for key, dataset in key2dataset.items():
|
||||||
|
# Query the loss / accuracy / time for the `index`-th candidate
|
||||||
|
# architecture on CIFAR-10
|
||||||
|
# info is a dict, where you can easily figure out the meaning by key
|
||||||
|
info = api.get_more_info(index, key)
|
||||||
|
print(' -->> The performance on {:}: {:}'.format(dataset, info))
|
||||||
|
|
||||||
|
# Query the flops, params, latency. info is a dict.
|
||||||
|
info = api.get_cost_info(index, key)
|
||||||
|
print(' -->> The cost info on {:}: {:}'.format(dataset, info))
|
||||||
|
|
||||||
|
# Simulate the training of the `index`-th candidate:
|
||||||
|
validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval(
|
||||||
|
index, dataset=key, hp='12')
|
||||||
|
print(' -->> The validation accuracy={:}, latency={:}, '
|
||||||
|
'the current time cost={:} s, accumulated time cost={:} s'
|
||||||
|
.format(validation_accuracy, latency, time_cost,
|
||||||
|
current_total_time_cost))
|
||||||
|
|
||||||
|
# Print the configuration of the `index`-th architecture on CIFAR-10
|
||||||
|
config = api.get_net_config(index, key)
|
||||||
|
print(' -->> The configuration on {:} is {:}'.format(dataset, config))
|
||||||
|
|
||||||
|
# Show the information of the `index`-th architecture
|
||||||
|
api.show(index)
|
@ -2,61 +2,83 @@
|
|||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
||||||
##############################################################################
|
##############################################################################
|
||||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||||
#####################################################################################
|
##############################################################################
|
||||||
# The history of benchmark files (the name is NATS-tss-[version]-[md5].pickle.pbz2) #
|
# The history of benchmark files are as follows, #
|
||||||
# [2020.08.31] NATS-tss-v1_0-3ffb9.pickle.pbz2 #
|
# where the format is (the name is NATS-tss-[version]-[md5].pickle.pbz2) #
|
||||||
#####################################################################################
|
# [2020.08.31] NATS-tss-v1_0-3ffb9.pickle.pbz2 #
|
||||||
import os, copy, random, numpy as np
|
##############################################################################
|
||||||
from typing import List, Text, Union, Dict, Optional
|
# pylint: disable=line-too-long
|
||||||
from collections import OrderedDict, defaultdict
|
"""The API for topology search space in NATS-Bench."""
|
||||||
import warnings
|
import collections
|
||||||
from .api_utils import time_string
|
import copy
|
||||||
from .api_utils import pickle_load
|
import os
|
||||||
from .api_utils import ArchResults
|
import random
|
||||||
from .api_utils import NASBenchMetaAPI
|
from typing import Any, Dict, List, Optional, Text, Union
|
||||||
from .api_utils import remap_dataset_set_names
|
|
||||||
from .api_utils import nats_is_dir
|
from nats_bench.api_utils import ArchResults
|
||||||
from .api_utils import nats_is_file
|
from nats_bench.api_utils import NASBenchMetaAPI
|
||||||
from .api_utils import PICKLE_EXT
|
from nats_bench.api_utils import nats_is_dir
|
||||||
|
from nats_bench.api_utils import nats_is_file
|
||||||
|
from nats_bench.api_utils import PICKLE_EXT
|
||||||
|
from nats_bench.api_utils import pickle_load
|
||||||
|
from nats_bench.api_utils import time_string
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
ALL_BASE_NAMES = ['NATS-tss-v1_0-3ffb9']
|
ALL_BASE_NAMES = ['NATS-tss-v1_0-3ffb9']
|
||||||
|
|
||||||
|
|
||||||
def print_information(information, extra_info=None, show=False):
|
def print_information(information, extra_info=None, show=False):
|
||||||
|
"""print out the information of a given ArchResults."""
|
||||||
dataset_names = information.get_dataset_names()
|
dataset_names = information.get_dataset_names()
|
||||||
strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
|
strings = [
|
||||||
|
information.arch_str,
|
||||||
|
'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)
|
||||||
|
]
|
||||||
|
|
||||||
def metric2str(loss, acc):
|
def metric2str(loss, acc):
|
||||||
return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
|
return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
|
||||||
|
|
||||||
for ida, dataset in enumerate(dataset_names):
|
for dataset in dataset_names:
|
||||||
metric = information.get_compute_costs(dataset)
|
metric = information.get_compute_costs(dataset)
|
||||||
flop, param, latency = metric['flops'], metric['params'], metric['latency']
|
flop, param, latency = metric['flops'], metric['params'], metric['latency']
|
||||||
str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
|
str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(
|
||||||
|
dataset, flop, param,
|
||||||
|
'{:.2f}'.format(latency *
|
||||||
|
1000) if latency is not None and latency > 0 else None)
|
||||||
train_info = information.get_metrics(dataset, 'train')
|
train_info = information.get_metrics(dataset, 'train')
|
||||||
if dataset == 'cifar10-valid':
|
if dataset == 'cifar10-valid':
|
||||||
valid_info = information.get_metrics(dataset, 'x-valid')
|
valid_info = information.get_metrics(dataset, 'x-valid')
|
||||||
str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']))
|
str2 = '{:14s} train : [{:}], valid : [{:}]'.format(
|
||||||
|
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||||
|
metric2str(valid_info['loss'], valid_info['accuracy']))
|
||||||
elif dataset == 'cifar10':
|
elif dataset == 'cifar10':
|
||||||
test__info = information.get_metrics(dataset, 'ori-test')
|
test__info = information.get_metrics(dataset, 'ori-test')
|
||||||
str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
|
str2 = '{:14s} train : [{:}], test : [{:}]'.format(
|
||||||
|
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||||
|
metric2str(test__info['loss'], test__info['accuracy']))
|
||||||
else:
|
else:
|
||||||
valid_info = information.get_metrics(dataset, 'x-valid')
|
valid_info = information.get_metrics(dataset, 'x-valid')
|
||||||
test__info = information.get_metrics(dataset, 'x-test')
|
test__info = information.get_metrics(dataset, 'x-test')
|
||||||
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
|
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(
|
||||||
|
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||||
|
metric2str(valid_info['loss'], valid_info['accuracy']),
|
||||||
|
metric2str(test__info['loss'], test__info['accuracy']))
|
||||||
strings += [str1, str2]
|
strings += [str1, str2]
|
||||||
if show: print('\n'.join(strings))
|
if show: print('\n'.join(strings))
|
||||||
return strings
|
return strings
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This is the class for the API of topology search space in NATS-Bench.
|
|
||||||
"""
|
|
||||||
class NATStopology(NASBenchMetaAPI):
|
class NATStopology(NASBenchMetaAPI):
|
||||||
|
"""This is the class for the API of topology search space in NATS-Bench."""
|
||||||
|
|
||||||
""" The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
|
def __init__(self,
|
||||||
def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, fast_mode: bool=False, verbose: bool=True):
|
file_path_or_dict: Optional[Union[Text, Dict[Text, Any]]] = None,
|
||||||
self.ALL_BASE_NAMES = ALL_BASE_NAMES
|
fast_mode: bool = False,
|
||||||
|
verbose: bool = True):
|
||||||
|
"""The initialization function that takes the dataset file path (or a dict loaded from that path) as input."""
|
||||||
|
self._all_base_names = ALL_BASE_NAMES
|
||||||
self.filename = None
|
self.filename = None
|
||||||
self._search_space_name = 'topology'
|
self._search_space_name = 'topology'
|
||||||
self._fast_mode = fast_mode
|
self._fast_mode = fast_mode
|
||||||
@ -64,25 +86,35 @@ class NATStopology(NASBenchMetaAPI):
|
|||||||
self.reset_time()
|
self.reset_time()
|
||||||
if file_path_or_dict is None:
|
if file_path_or_dict is None:
|
||||||
if self._fast_mode:
|
if self._fast_mode:
|
||||||
self._archive_dir = os.path.join(os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1]))
|
self._archive_dir = os.path.join(
|
||||||
|
os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1]))
|
||||||
else:
|
else:
|
||||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], '{:}.{:}'.format(ALL_BASE_NAMES[-1], PICKLE_EXT))
|
file_path_or_dict = os.path.join(
|
||||||
print ('{:} Try to use the default NATS-Bench (topology) path from {:}.'.format(time_string(), file_path_or_dict))
|
os.environ['TORCH_HOME'], '{:}.{:}'.format(
|
||||||
|
ALL_BASE_NAMES[-1], PICKLE_EXT))
|
||||||
|
print('{:} Try to use the default NATS-Bench (topology) path '
|
||||||
|
'from {:}.'.format(time_string(), file_path_or_dict))
|
||||||
if isinstance(file_path_or_dict, str):
|
if isinstance(file_path_or_dict, str):
|
||||||
file_path_or_dict = str(file_path_or_dict)
|
file_path_or_dict = str(file_path_or_dict)
|
||||||
if verbose:
|
if verbose:
|
||||||
print('{:} Try to create the NATS-Bench (topology) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode))
|
print('{:} Try to create the NATS-Bench (topology) api '
|
||||||
if not nats_is_file(file_path_or_dict) and not nats_is_dir(file_path_or_dict):
|
'from {:} with fast_mode={:}'.format(
|
||||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
time_string(), file_path_or_dict, fast_mode))
|
||||||
|
if not nats_is_file(file_path_or_dict) and not nats_is_dir(
|
||||||
|
file_path_or_dict):
|
||||||
|
raise ValueError('{:} is neither a file or a dir.'.format(
|
||||||
|
file_path_or_dict))
|
||||||
self.filename = os.path.basename(file_path_or_dict)
|
self.filename = os.path.basename(file_path_or_dict)
|
||||||
if fast_mode:
|
if fast_mode:
|
||||||
if nats_is_file(file_path_or_dict):
|
if nats_is_file(file_path_or_dict):
|
||||||
raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict))
|
raise ValueError('fast_mode={:} must feed the path for directory '
|
||||||
|
': {:}'.format(fast_mode, file_path_or_dict))
|
||||||
else:
|
else:
|
||||||
self._archive_dir = file_path_or_dict
|
self._archive_dir = file_path_or_dict
|
||||||
else:
|
else:
|
||||||
if nats_is_dir(file_path_or_dict):
|
if nats_is_dir(file_path_or_dict):
|
||||||
raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict))
|
raise ValueError('fast_mode={:} must feed the path for file '
|
||||||
|
': {:}'.format(fast_mode, file_path_or_dict))
|
||||||
else:
|
else:
|
||||||
file_path_or_dict = pickle_load(file_path_or_dict)
|
file_path_or_dict = pickle_load(file_path_or_dict)
|
||||||
elif isinstance(file_path_or_dict, dict):
|
elif isinstance(file_path_or_dict, dict):
|
||||||
@ -90,65 +122,73 @@ class NATStopology(NASBenchMetaAPI):
|
|||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
if isinstance(file_path_or_dict, dict):
|
if isinstance(file_path_or_dict, dict):
|
||||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
for key in keys:
|
||||||
|
if key not in file_path_or_dict:
|
||||||
|
raise ValueError('Can not find key[{:}] in the dict'.format(key))
|
||||||
self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs'])
|
self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs'])
|
||||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
# NOTE(xuanyidong): This is a dict mapping each architecture to a dict,
|
||||||
self.arch2infos_dict = OrderedDict()
|
# where the key is #epochs and the value is ArchResults
|
||||||
|
self.arch2infos_dict = collections.OrderedDict()
|
||||||
self._avaliable_hps = set()
|
self._avaliable_hps = set()
|
||||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||||
all_infos = file_path_or_dict['arch2infos'][xkey]
|
all_infos = file_path_or_dict['arch2infos'][xkey]
|
||||||
hp2archres = OrderedDict()
|
hp2archres = collections.OrderedDict()
|
||||||
for hp_key, results in all_infos.items():
|
for hp_key, results in all_infos.items():
|
||||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||||
self.arch2infos_dict[xkey] = hp2archres
|
self.arch2infos_dict[xkey] = hp2archres
|
||||||
self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes'])
|
self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes'])
|
||||||
elif self.archive_dir is not None:
|
elif self.archive_dir is not None:
|
||||||
benchmark_meta = pickle_load('{:}/meta.{:}'.format(self.archive_dir, PICKLE_EXT))
|
benchmark_meta = pickle_load('{:}/meta.{:}'.format(
|
||||||
|
self.archive_dir, PICKLE_EXT))
|
||||||
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
||||||
self.arch2infos_dict = OrderedDict()
|
self.arch2infos_dict = collections.OrderedDict()
|
||||||
self._avaliable_hps = set()
|
self._avaliable_hps = set()
|
||||||
self.evaluated_indexes = set()
|
self.evaluated_indexes = set()
|
||||||
else:
|
else:
|
||||||
raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir must be set'.format(type(file_path_or_dict)))
|
raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir '
|
||||||
|
'must be set'.format(type(file_path_or_dict)))
|
||||||
self.archstr2index = {}
|
self.archstr2index = {}
|
||||||
for idx, arch in enumerate(self.meta_archs):
|
for idx, arch in enumerate(self.meta_archs):
|
||||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
if arch in self.archstr2index:
|
||||||
|
raise ValueError('This [{:}]-th arch {:} already in the '
|
||||||
|
'dict ({:}).'.format(
|
||||||
|
idx, arch, self.archstr2index[arch]))
|
||||||
self.archstr2index[arch] = idx
|
self.archstr2index[arch] = idx
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print('{:} Create NATS-Bench (topology) done with {:}/{:} architectures avaliable.'.format(
|
print('{:} Create NATS-Bench (topology) done with {:}/{:} architectures '
|
||||||
time_string(), len(self.evaluated_indexes), len(self.meta_archs)))
|
'avaliable.'.format(time_string(),
|
||||||
|
len(self.evaluated_indexes),
|
||||||
|
len(self.meta_archs)))
|
||||||
|
|
||||||
def query_info_str_by_arch(self, arch, hp: Text='12'):
|
def query_info_str_by_arch(self, arch, hp: Text = '12'):
|
||||||
""" This function is used to query the information of a specific architecture
|
"""Query the information of a specific architecture.
|
||||||
'arch' can be an architecture index or an architecture string
|
|
||||||
When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config'
|
Args:
|
||||||
When hp=200, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/200E.config'
|
arch: it can be an architecture index or an architecture string.
|
||||||
The difference between these three configurations are the number of training epochs.
|
|
||||||
|
hp: the hyperparamete indicator, could be 12 or 200. The difference
|
||||||
|
between these three configurations are the number of training epochs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
ArchResults instance
|
||||||
"""
|
"""
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp))
|
print('{:} Call query_info_str_by_arch with arch={:}'
|
||||||
|
'and hp={:}'.format(time_string(), arch, hp))
|
||||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||||
|
|
||||||
# obtain the metric for the `index`-th architecture
|
def get_more_info(self,
|
||||||
# `dataset` indicates the dataset:
|
index,
|
||||||
# 'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
|
dataset,
|
||||||
# 'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
|
iepoch=None,
|
||||||
# 'cifar100' : using the proposed train set of CIFAR-100 as the training set
|
hp: Text = '12',
|
||||||
# 'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
|
is_random: bool = True):
|
||||||
# `iepoch` indicates the index of training epochs from 0 to 11/199.
|
"""Return the metric for the `index`-th architecture."""
|
||||||
# When iepoch=None, it will return the metric for the last training epoch
|
|
||||||
# When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
|
|
||||||
# `use_12epochs_result` indicates different hyper-parameters for training
|
|
||||||
# When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs
|
|
||||||
# When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs
|
|
||||||
# `is_random`
|
|
||||||
# When is_random=True, the performance of a random architecture will be returned
|
|
||||||
# When is_random=False, the performanceo of all trials will be averaged.
|
|
||||||
def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True):
|
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(
|
print('{:} Call the get_more_info function with index={:}, dataset={:}, '
|
||||||
time_string(), index, dataset, iepoch, hp, is_random))
|
'iepoch={:}, hp={:}, and is_random={:}.'.format(
|
||||||
|
time_string(), index, dataset, iepoch, hp, is_random))
|
||||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||||
self._prepare_info(index)
|
self._prepare_info(index)
|
||||||
if index not in self.arch2infos_dict:
|
if index not in self.arch2infos_dict:
|
||||||
@ -161,36 +201,43 @@ class NATStopology(NASBenchMetaAPI):
|
|||||||
# collect the training information
|
# collect the training information
|
||||||
train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
|
train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
|
||||||
total = train_info['iepoch'] + 1
|
total = train_info['iepoch'] + 1
|
||||||
xinfo = {'train-loss' : train_info['loss'],
|
xinfo = {
|
||||||
'train-accuracy': train_info['accuracy'],
|
'train-loss':
|
||||||
'train-per-time': train_info['all_time'] / total if train_info['all_time'] is not None else None,
|
train_info['loss'],
|
||||||
'train-all-time': train_info['all_time']}
|
'train-accuracy':
|
||||||
|
train_info['accuracy'],
|
||||||
|
'train-per-time':
|
||||||
|
train_info['all_time'] /
|
||||||
|
total if train_info['all_time'] is not None else None,
|
||||||
|
'train-all-time':
|
||||||
|
train_info['all_time']
|
||||||
|
}
|
||||||
# collect the evaluation information
|
# collect the evaluation information
|
||||||
if dataset == 'cifar10-valid':
|
if dataset == 'cifar10-valid':
|
||||||
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
||||||
try:
|
try:
|
||||||
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||||
except:
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
test_info = None
|
test_info = None
|
||||||
valtest_info = None
|
valtest_info = None
|
||||||
else:
|
else:
|
||||||
try: # collect results on the proposed test set
|
try: # collect results on the proposed test set
|
||||||
if dataset == 'cifar10':
|
if dataset == 'cifar10':
|
||||||
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||||
else:
|
else:
|
||||||
test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
|
test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
|
||||||
except:
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
test_info = None
|
test_info = None
|
||||||
try: # collect results on the proposed validation set
|
try: # collect results on the proposed validation set
|
||||||
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
||||||
except:
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
valid_info = None
|
valid_info = None
|
||||||
try:
|
try:
|
||||||
if dataset != 'cifar10':
|
if dataset != 'cifar10':
|
||||||
valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||||
else:
|
else:
|
||||||
valtest_info = None
|
valtest_info = None
|
||||||
except:
|
except Exception as unused_e: # pylint: disable=broad-except
|
||||||
valtest_info = None
|
valtest_info = None
|
||||||
if valid_info is not None:
|
if valid_info is not None:
|
||||||
xinfo['valid-loss'] = valid_info['loss']
|
xinfo['valid-loss'] = valid_info['loss']
|
||||||
@ -214,46 +261,52 @@ class NATStopology(NASBenchMetaAPI):
|
|||||||
self._show(index, print_information)
|
self._show(index, print_information)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def str2lists(arch_str: Text) -> List[tuple]:
|
def str2lists(arch_str: Text) -> List[Any]:
|
||||||
"""
|
"""Shows how to read the string-based architecture encoding.
|
||||||
This function shows how to read the string-based architecture encoding.
|
|
||||||
It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py`
|
|
||||||
|
|
||||||
:param
|
Args:
|
||||||
arch_str: the input is a string indicates the architecture topology, such as
|
arch_str: the input is a string indicates the architecture topology, such as
|
||||||
|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
|
|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
|
||||||
:return: a list of tuple, contains multiple (op, input_node_index) pairs.
|
Returns:
|
||||||
|
a list of tuple, contains multiple (op, input_node_index) pairs.
|
||||||
|
|
||||||
:usage
|
[USAGE]
|
||||||
|
It is the same as the `str2structure` func in AutoDL-Projects:
|
||||||
|
`github.com/D-X-Y/AutoDL-Projects/lib/models/cell_searchs/genotypes.py`
|
||||||
|
```
|
||||||
arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
|
arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
|
||||||
print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list
|
print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list
|
||||||
for i, node in enumerate(arch):
|
for i, node in enumerate(arch):
|
||||||
print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node))
|
print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node))
|
||||||
|
```
|
||||||
"""
|
"""
|
||||||
node_strs = arch_str.split('+')
|
node_strs = arch_str.split('+')
|
||||||
genotypes = []
|
genotypes = []
|
||||||
for i, node_str in enumerate(node_strs):
|
for unused_i, node_str in enumerate(node_strs):
|
||||||
inputs = list(filter(lambda x: x != '', node_str.split('|')))
|
inputs = list(filter(lambda x: x != '', node_str.split('|'))) # pylint: disable=g-explicit-bool-comparison
|
||||||
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
|
for xinput in inputs:
|
||||||
inputs = ( xi.split('~') for xi in inputs )
|
assert len(
|
||||||
input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
|
xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
|
||||||
genotypes.append( input_infos )
|
inputs = (xi.split('~') for xi in inputs)
|
||||||
|
input_infos = tuple((op, int(idx)) for (op, idx) in inputs)
|
||||||
|
genotypes.append(input_infos)
|
||||||
return genotypes
|
return genotypes
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def str2matrix(arch_str: Text,
|
def str2matrix(arch_str: Text,
|
||||||
search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray:
|
search_space: List[Text] = ('none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3')) -> np.ndarray:
|
||||||
"""
|
"""Convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101.
|
||||||
This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101.
|
|
||||||
|
|
||||||
:param
|
Args:
|
||||||
arch_str: the input is a string indicates the architecture topology, such as
|
arch_str: the input is a string indicates the architecture topology, such as
|
||||||
|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
|
|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
|
||||||
search_space: a list of operation string, the default list is the topology search space for NATS-BENCH.
|
search_space: a list of operation string, the default list is the topology search space for NATS-BENCH.
|
||||||
the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24
|
the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24
|
||||||
:return
|
|
||||||
|
Returns:
|
||||||
the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology
|
the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology
|
||||||
:usage
|
|
||||||
|
[USAGE]
|
||||||
matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
|
matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
|
||||||
This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful).
|
This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful).
|
||||||
[ [0, 0, 0, 0], # the first line represents the input (0-th) node
|
[ [0, 0, 0, 0], # the first line represents the input (0-th) node
|
||||||
@ -262,19 +315,19 @@ class NATStopology(NASBenchMetaAPI):
|
|||||||
[0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node )
|
[0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node )
|
||||||
In the topology search space in NATS-BENCH, 0-th-op is 'none', 1-th-op is 'skip_connect',
|
In the topology search space in NATS-BENCH, 0-th-op is 'none', 1-th-op is 'skip_connect',
|
||||||
2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'.
|
2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'.
|
||||||
:(NOTE)
|
[NOTE]
|
||||||
If a node has two input-edges from the same node, this function does not work. One edge will be overlapped.
|
If a node has two input-edges from the same node, this function does not work. One edge will be overlapped.
|
||||||
"""
|
"""
|
||||||
node_strs = arch_str.split('+')
|
node_strs = arch_str.split('+')
|
||||||
num_nodes = len(node_strs) + 1
|
num_nodes = len(node_strs) + 1
|
||||||
matrix = np.zeros((num_nodes, num_nodes))
|
matrix = np.zeros((num_nodes, num_nodes))
|
||||||
for i, node_str in enumerate(node_strs):
|
for i, node_str in enumerate(node_strs):
|
||||||
inputs = list(filter(lambda x: x != '', node_str.split('|')))
|
inputs = list(filter(lambda x: x != '', node_str.split('|'))) # pylint: disable=g-explicit-bool-comparison
|
||||||
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
|
for xinput in inputs:
|
||||||
|
assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
|
||||||
for xi in inputs:
|
for xi in inputs:
|
||||||
op, idx = xi.split('~')
|
op, idx = xi.split('~')
|
||||||
if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space))
|
if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space))
|
||||||
op_idx, node_idx = search_space.index(op), int(idx)
|
op_idx, node_idx = search_space.index(op), int(idx)
|
||||||
matrix[i+1, node_idx] = op_idx
|
matrix[i+1, node_idx] = op_idx
|
||||||
return matrix
|
return matrix
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user