Update NATS-Bench (tss version 0.99)
This commit is contained in:
		
							
								
								
									
										262
									
								
								exps/NATS-Bench/tss-collect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										262
									
								
								exps/NATS-Bench/tss-collect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,262 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          # | ||||
| ############################################################################## | ||||
| # This file is used to re-orangize all checkpoints (created by main-tss.py)  # | ||||
| # into a single benchmark file. Besides, for each trial, we will merge the   # | ||||
| # information of all its trials into a single file.                          # | ||||
| #                                                                            # | ||||
| # Usage:                                                                     # | ||||
| # python exps/NATS-Bench/tss-collect.py                                      # | ||||
| ############################################################################## | ||||
| import os, re, sys, time, random, argparse, collections | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| from tqdm import tqdm | ||||
| from pathlib import Path | ||||
| from collections import defaultdict, OrderedDict | ||||
| from typing import Dict, Any, Text, List | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| from models       import CellStructure, get_cell_based_tiny_net, get_search_spaces | ||||
| from nats_bench   import pickle_save, pickle_load, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from nas_201_api  import NASBench201API | ||||
|  | ||||
|  | ||||
| api = NASBench201API('{:}/.torch/NAS-Bench-201-v1_0-e61699.pth'.format(os.environ['HOME'])) | ||||
|  | ||||
| NATS_TSS_BASE_NAME = 'NATS-tss-v1_0'  # 2020.08.28 | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, Any], | ||||
|                         results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount: | ||||
|   xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], | ||||
|                          results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     ok_dataset = 0 | ||||
|     for dataset in datasets: | ||||
|       if dataset not in checkpoint: | ||||
|         print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)) | ||||
|         continue | ||||
|       else: | ||||
|         ok_dataset += 1 | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|     if ok_dataset == 0: raise ValueError('{:} does not find any data'.format(checkpoint_path)) | ||||
|   return information | ||||
|  | ||||
|  | ||||
| def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]): | ||||
|   # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth | ||||
|   cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2 | ||||
|   cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200') | ||||
|   image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200') | ||||
|   for hp, arch_info in arch_infos.items(): | ||||
|     arch_info.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|     arch_info.reset_latency('cifar10', None, cifar010_latency) | ||||
|     arch_info.reset_latency('cifar100', None, cifar100_latency) | ||||
|     arch_info.reset_latency('ImageNet16-120', None, image_latency) | ||||
|  | ||||
|   train_per_epoch_time = list(arch_infos['12'].query('cifar10-valid', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|   for key, value in arch_infos['12'].query('cifar10-valid', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time)) | ||||
|   nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, 'ImageNet16-120-test': 6000, | ||||
|           'cifar10-valid-train': 25000, 'cifar10-valid-valid': 25000, | ||||
|           'cifar10-train': 50000, 'cifar10-test': 10000, | ||||
|           'cifar100-train': 50000, 'cifar100-test': 10000, 'cifar100-valid': 5000} | ||||
|   eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums['cifar10-valid-valid'] + nums['cifar10-test']) | ||||
|   for hp, arch_info in arch_infos.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar10-valid', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-valid-train']) | ||||
|     arch_info.reset_pseudo_train_times('cifar10', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-train']) | ||||
|     arch_info.reset_pseudo_train_times('cifar100', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar100-train']) | ||||
|     arch_info.reset_pseudo_train_times('ImageNet16-120', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['ImageNet16-120-train']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_per_sample*nums['cifar10-valid-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_per_sample * nums['cifar10-test']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_per_sample * nums['cifar10-test']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_per_sample * nums['cifar100-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_per_sample * nums['cifar100-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_per_sample * nums['cifar100-test']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_per_sample * nums['ImageNet16-120-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_per_sample * nums['ImageNet16-120-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test']) | ||||
|   return arch_infos | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, save_name, nets, total, sup_config): | ||||
|   dataloader_dict = get_nas_bench_loaders(6) | ||||
|   hps, seeds = ['12', '200'], set() | ||||
|   for hp in hps: | ||||
|     sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|     ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth'))) | ||||
|     seed2names = defaultdict(list) | ||||
|     for ckp in ckps: | ||||
|       parts = re.split('-|\.', ckp.name) | ||||
|       seed2names[parts[3]].append(ckp.name) | ||||
|     print('DIR : {:}'.format(sub_save_dir)) | ||||
|     nums = [] | ||||
|     for seed, xlist in seed2names.items(): | ||||
|       seeds.add(seed) | ||||
|       nums.append(len(xlist)) | ||||
|       print('  [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist))) | ||||
|     assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) | ||||
|   print('{:} start simplify the checkpoint.'.format(time_string())) | ||||
|  | ||||
|   datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|  | ||||
|   # Create the directory to save the processed data | ||||
|   # full_save_dir contains all benchmark files with trained weights. | ||||
|   # simplify_save_dir contains all benchmark files without trained weights. | ||||
|   full_save_dir = save_dir / (save_name + '-FULL') | ||||
|   simple_save_dir = save_dir / (save_name + '-SIMPLIFY') | ||||
|   full_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   simple_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   # all data in memory | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   end_time, arch_time = time.time(), AverageMeter() | ||||
|   # save the meta information | ||||
|   temp_final_infos = {'meta_archs' : nets, | ||||
|                       'total_archs': total, | ||||
|                       'arch2infos' : None, | ||||
|                       'evaluated_indexes': set()} | ||||
|   pickle_save(temp_final_infos, str(full_save_dir / 'meta.pickle')) | ||||
|   pickle_save(temp_final_infos, str(simple_save_dir / 'meta.pickle')) | ||||
|  | ||||
|   for index in tqdm(range(total)): | ||||
|     arch_str = nets[index] | ||||
|     hp2info = OrderedDict() | ||||
|  | ||||
|     full_save_path = full_save_dir / '{:06d}.pickle'.format(index) | ||||
|     simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index) | ||||
|     for hp in hps: | ||||
|       sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|       ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds] | ||||
|       ckps = [x for x in ckps if x.exists()] | ||||
|       if len(ckps) == 0: | ||||
|         raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) | ||||
|  | ||||
|       arch_info = account_one_arch(index, arch_str, ckps, datasets, dataloader_dict) | ||||
|       hp2info[hp] = arch_info | ||||
|      | ||||
|     hp2info = correct_time_related_info(index, hp2info) | ||||
|     evaluated_indexes.add(index) | ||||
|      | ||||
|     to_save_data = OrderedDict({'12': hp2info['12'].state_dict(), | ||||
|                                 '200': hp2info['200'].state_dict()}) | ||||
|     pickle_save(to_save_data, str(full_save_path)) | ||||
|      | ||||
|     for hp in hps: hp2info[hp].clear_params() | ||||
|     to_save_data = OrderedDict({'12': hp2info['12'].state_dict(), | ||||
|                                 '200': hp2info['200'].state_dict()}) | ||||
|     pickle_save(to_save_data, str(simple_save_path)) | ||||
|     arch2infos[index] = to_save_data | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True)) | ||||
|     # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) | ||||
|   print('{:} {:} done.'.format(time_string(), save_name)) | ||||
|   final_infos = {'meta_archs' : nets, | ||||
|                  'total_archs': total, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = save_dir / '{:}.pickle'.format(save_name) | ||||
|   pickle_save(final_infos, str(save_file_name)) | ||||
|   # move the benchmark file to a new path | ||||
|   hd5sum = get_md5_file(str(save_file_name) + '.pbz2') | ||||
|   hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(str(save_file_name) + '.pbz2', hd5_file_name) | ||||
|   print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name)) | ||||
|   # move the directory to a new path | ||||
|   hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(full_save_dir, hd5_full_save_dir) | ||||
|   shutil.move(simple_save_dir, hd5_simple_save_dir) | ||||
|   # save the meta information for simple and full | ||||
|   # final_infos['arch2infos'] = None | ||||
|   # final_infos['evaluated_indexes'] = set() | ||||
|  | ||||
|  | ||||
| def traverse_net(max_node): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   return [x.tostr() for x in archs] | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   parser.add_argument('--check_N'      ,  type=int, default=15625,  help='For safety.') | ||||
|   parser.add_argument('--save_name'    ,  type=str, default='process',                  help='The save directory.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   nets = traverse_net(args.max_node) | ||||
|   if len(nets) != args.check_N: | ||||
|     raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|    | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells}) | ||||
		Reference in New Issue
	
	Block a user