Add more algorithms
This commit is contained in:
		
							
								
								
									
										140
									
								
								lib/log_utils/logger.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										140
									
								
								lib/log_utils/logger.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,140 @@ | ||||
| # Copyright (c) Facebook, Inc. and its affiliates. | ||||
| # All rights reserved. | ||||
| # | ||||
| # This source code is licensed under the license found in the | ||||
| # LICENSE file in the root directory of this source tree. | ||||
| # | ||||
| from pathlib import Path | ||||
| import importlib, warnings | ||||
| import os, sys, time, numpy as np | ||||
| if sys.version_info.major == 2: # Python 2.x | ||||
|   from StringIO import StringIO as BIO | ||||
| else:                           # Python 3.x | ||||
|   from io import BytesIO as BIO | ||||
|  | ||||
| if importlib.util.find_spec('tensorflow'): | ||||
|   import tensorflow as tf | ||||
|  | ||||
|  | ||||
| class Logger(object): | ||||
|    | ||||
|   def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False): | ||||
|     """Create a summary writer logging to log_dir.""" | ||||
|     self.seed      = int(seed) | ||||
|     self.log_dir   = Path(log_dir) | ||||
|     self.model_dir = Path(log_dir) / 'checkpoint' | ||||
|     self.log_dir.mkdir  (parents=True, exist_ok=True) | ||||
|     if create_model_dir: | ||||
|       self.model_dir.mkdir(parents=True, exist_ok=True) | ||||
|     #self.meta_dir.mkdir(mode=0o775, parents=True, exist_ok=True) | ||||
|  | ||||
|     self.use_tf  = bool(use_tf) | ||||
|     self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h', time.gmtime(time.time()) ))) | ||||
|     #self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h-at-%H:%M:%S', time.gmtime(time.time()) ))) | ||||
|     self.logger_path = self.log_dir / 'seed-{:}-T-{:}.log'.format(self.seed, time.strftime('%d-%h-at-%H-%M-%S', time.gmtime(time.time()))) | ||||
|     self.logger_file = open(self.logger_path, 'w') | ||||
|  | ||||
|     if self.use_tf: | ||||
|       self.tensorboard_dir.mkdir(mode=0o775, parents=True, exist_ok=True) | ||||
|       self.writer = tf.summary.FileWriter(str(self.tensorboard_dir)) | ||||
|     else: | ||||
|       self.writer = None | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}(dir={log_dir}, use-tf={use_tf}, writer={writer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def path(self, mode): | ||||
|     valids = ('model', 'best', 'info', 'log') | ||||
|     if   mode == 'model': return self.model_dir / 'seed-{:}-basic.pth'.format(self.seed) | ||||
|     elif mode == 'best' : return self.model_dir / 'seed-{:}-best.pth'.format(self.seed) | ||||
|     elif mode == 'info' : return self.log_dir / 'seed-{:}-last-info.pth'.format(self.seed) | ||||
|     elif mode == 'log'  : return self.log_dir | ||||
|     else: raise TypeError('Unknow mode = {:}, valid modes = {:}'.format(mode, valids)) | ||||
|  | ||||
|   def extract_log(self): | ||||
|     return self.logger_file | ||||
|  | ||||
|   def close(self): | ||||
|     self.logger_file.close() | ||||
|     if self.writer is not None: | ||||
|       self.writer.close() | ||||
|  | ||||
|   def log(self, string, save=True, stdout=False): | ||||
|     if stdout: | ||||
|       sys.stdout.write(string); sys.stdout.flush() | ||||
|     else: | ||||
|       print (string) | ||||
|     if save: | ||||
|       self.logger_file.write('{:}\n'.format(string)) | ||||
|       self.logger_file.flush() | ||||
|  | ||||
|   def scalar_summary(self, tags, values, step): | ||||
|     """Log a scalar variable.""" | ||||
|     if not self.use_tf: | ||||
|       warnings.warn('Do set use-tensorflow installed but call scalar_summary') | ||||
|     else: | ||||
|       assert isinstance(tags, list) == isinstance(values, list), 'Type : {:} vs {:}'.format(type(tags), type(values)) | ||||
|       if not isinstance(tags, list): | ||||
|         tags, values = [tags], [values] | ||||
|       for tag, value in zip(tags, values): | ||||
|         summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) | ||||
|         self.writer.add_summary(summary, step) | ||||
|         self.writer.flush() | ||||
|  | ||||
|   def image_summary(self, tag, images, step): | ||||
|     """Log a list of images.""" | ||||
|     import scipy | ||||
|     if not self.use_tf: | ||||
|       warnings.warn('Do set use-tensorflow installed but call scalar_summary') | ||||
|       return | ||||
|  | ||||
|     img_summaries = [] | ||||
|     for i, img in enumerate(images): | ||||
|       # Write the image to a string | ||||
|       try: | ||||
|         s = StringIO() | ||||
|       except: | ||||
|         s = BytesIO() | ||||
|       scipy.misc.toimage(img).save(s, format="png") | ||||
|  | ||||
|       # Create an Image object | ||||
|       img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), | ||||
|                      height=img.shape[0], | ||||
|                      width=img.shape[1]) | ||||
|       # Create a Summary value | ||||
|       img_summaries.append(tf.Summary.Value(tag='{}/{}'.format(tag, i), image=img_sum)) | ||||
|  | ||||
|     # Create and write Summary | ||||
|     summary = tf.Summary(value=img_summaries) | ||||
|     self.writer.add_summary(summary, step) | ||||
|     self.writer.flush() | ||||
|      | ||||
|   def histo_summary(self, tag, values, step, bins=1000): | ||||
|     """Log a histogram of the tensor of values.""" | ||||
|     if not self.use_tf: raise ValueError('Do not have tensorflow') | ||||
|     import tensorflow as tf | ||||
|  | ||||
|     # Create a histogram using numpy | ||||
|     counts, bin_edges = np.histogram(values, bins=bins) | ||||
|  | ||||
|     # Fill the fields of the histogram proto | ||||
|     hist = tf.HistogramProto() | ||||
|     hist.min = float(np.min(values)) | ||||
|     hist.max = float(np.max(values)) | ||||
|     hist.num = int(np.prod(values.shape)) | ||||
|     hist.sum = float(np.sum(values)) | ||||
|     hist.sum_squares = float(np.sum(values**2)) | ||||
|  | ||||
|     # Drop the start of the first bin | ||||
|     bin_edges = bin_edges[1:] | ||||
|  | ||||
|     # Add bin edges and counts | ||||
|     for edge in bin_edges: | ||||
|       hist.bucket_limit.append(edge) | ||||
|     for c in counts: | ||||
|       hist.bucket.append(c) | ||||
|  | ||||
|     # Create and write Summary | ||||
|     summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) | ||||
|     self.writer.add_summary(summary, step) | ||||
|     self.writer.flush() | ||||
		Reference in New Issue
	
	Block a user