Add more algorithms
This commit is contained in:
		
							
								
								
									
										102
									
								
								lib/log_utils/meter.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								lib/log_utils/meter.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import time, sys | ||||
| import numpy as np | ||||
|  | ||||
|  | ||||
| class AverageMeter(object):      | ||||
|   """Computes and stores the average and current value"""     | ||||
|   def __init__(self):    | ||||
|     self.reset() | ||||
|    | ||||
|   def reset(self): | ||||
|     self.val   = 0.0 | ||||
|     self.avg   = 0.0 | ||||
|     self.sum   = 0.0 | ||||
|     self.count = 0.0 | ||||
|    | ||||
|   def update(self, val, n=1):  | ||||
|     self.val = val     | ||||
|     self.sum += val * n      | ||||
|     self.count += n | ||||
|     self.avg = self.sum / self.count     | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}(val={val}, avg={avg}, count={count})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|  | ||||
| class RecorderMeter(object): | ||||
|   """Computes and stores the minimum loss value and its epoch index""" | ||||
|   def __init__(self, total_epoch): | ||||
|     self.reset(total_epoch) | ||||
|  | ||||
|   def reset(self, total_epoch): | ||||
|     assert total_epoch > 0, 'total_epoch should be greater than 0 vs {:}'.format(total_epoch) | ||||
|     self.total_epoch   = total_epoch | ||||
|     self.current_epoch = 0 | ||||
|     self.epoch_losses  = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val] | ||||
|     self.epoch_losses  = self.epoch_losses - 1 | ||||
|     self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val] | ||||
|     self.epoch_accuracy= self.epoch_accuracy | ||||
|  | ||||
|   def update(self, idx, train_loss, train_acc, val_loss, val_acc): | ||||
|     assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx) | ||||
|     self.epoch_losses  [idx, 0] = train_loss | ||||
|     self.epoch_losses  [idx, 1] = val_loss | ||||
|     self.epoch_accuracy[idx, 0] = train_acc | ||||
|     self.epoch_accuracy[idx, 1] = val_acc | ||||
|     self.current_epoch = idx + 1 | ||||
|     return self.max_accuracy(False) == self.epoch_accuracy[idx, 1] | ||||
|  | ||||
|   def max_accuracy(self, istrain): | ||||
|     if self.current_epoch <= 0: return 0 | ||||
|     if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max() | ||||
|     else:       return self.epoch_accuracy[:self.current_epoch, 1].max() | ||||
|  | ||||
|   def plot_curve(self, save_path): | ||||
|     import matplotlib | ||||
|     matplotlib.use('agg') | ||||
|     import matplotlib.pyplot as plt | ||||
|     title = 'the accuracy/loss curve of train/val' | ||||
|     dpi = 100  | ||||
|     width, height = 1600, 1000 | ||||
|     legend_fontsize = 10 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|  | ||||
|     fig = plt.figure(figsize=figsize) | ||||
|     x_axis = np.array([i for i in range(self.total_epoch)]) # epochs | ||||
|     y_axis = np.zeros(self.total_epoch) | ||||
|  | ||||
|     plt.xlim(0, self.total_epoch) | ||||
|     plt.ylim(0, 100) | ||||
|     interval_y = 5 | ||||
|     interval_x = 5 | ||||
|     plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x)) | ||||
|     plt.yticks(np.arange(0, 100 + interval_y, interval_y)) | ||||
|     plt.grid() | ||||
|     plt.title(title, fontsize=20) | ||||
|     plt.xlabel('the training epoch', fontsize=16) | ||||
|     plt.ylabel('accuracy', fontsize=16) | ||||
|    | ||||
|     y_axis[:] = self.epoch_accuracy[:, 0] | ||||
|     plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2) | ||||
|     plt.legend(loc=4, fontsize=legend_fontsize) | ||||
|  | ||||
|     y_axis[:] = self.epoch_accuracy[:, 1] | ||||
|     plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2) | ||||
|     plt.legend(loc=4, fontsize=legend_fontsize) | ||||
|  | ||||
|      | ||||
|     y_axis[:] = self.epoch_losses[:, 0] | ||||
|     plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2) | ||||
|     plt.legend(loc=4, fontsize=legend_fontsize) | ||||
|  | ||||
|     y_axis[:] = self.epoch_losses[:, 1] | ||||
|     plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2) | ||||
|     plt.legend(loc=4, fontsize=legend_fontsize) | ||||
|  | ||||
|     if save_path is not None: | ||||
|       fig.savefig(save_path, dpi=dpi, bbox_inches='tight') | ||||
|       print ('---- save figure {} into {}'.format(title, save_path)) | ||||
|     plt.close(fig) | ||||
		Reference in New Issue
	
	Block a user