update decompress codes and figures
This commit is contained in:
parent
3f483c37e7
commit
d9026be4b2
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2018 Xuanyi Dong
|
||||
Copyright (c) 2019 Xuanyi Dong
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
17
README.md
17
README.md
@ -1,8 +1,11 @@
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
## Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
|
||||
We propose A Gradient-based neural architecture search approach using Differentiable Architecture Sampler (GDAS).
|
||||
|
||||
## Requirements
|
||||
<img src="data/GDAS.png" width="520">
|
||||
Figure-1. We utilize a DAG to represent the search space of a neural cell. Different operations (colored arrows) transform one node (square) to its intermediate features (little circles). Meanwhile, each node is the sum of the intermediate features transformed from the previous nodes. As indicated by the solid connections, the neural cell in the proposed GDAS is a sampled sub-graph of this DAG. Specifically, among the intermediate features between every two nodes, GDAS samples one feature in a differentiable way.
|
||||
|
||||
### Requirements
|
||||
- PyTorch 1.0.1
|
||||
- Python 3.6
|
||||
- opencv
|
||||
@ -10,7 +13,7 @@ We propose A Gradient-based neural architecture search approach using Differenti
|
||||
conda install pytorch torchvision cuda100 -c pytorch
|
||||
```
|
||||
|
||||
## Usages
|
||||
### Usages
|
||||
|
||||
Train the searched CNN on CIFAR
|
||||
```
|
||||
@ -41,10 +44,14 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V2
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh GDAS
|
||||
```
|
||||
|
||||
## Training Logs
|
||||
### Training Logs
|
||||
Some training logs can be found in `./data/logs/`, and some pre-trained models can be found in [Google Driver](https://drive.google.com/open?id=1Ofhc49xC1PLIX4O708gJZ1ugzz4td_RJ).
|
||||
|
||||
## Citation
|
||||
### Experimental Results
|
||||
<img src="data/imagenet-results.png" width="600">
|
||||
Figure 2. Top-1 and top-5 errors on ImageNet.
|
||||
|
||||
### Citation
|
||||
```
|
||||
@inproceedings{dong2019search,
|
||||
title={Searching for A Robust Neural Architecture in Four GPU Hours},
|
||||
|
BIN
data/GDAS.png
Executable file
BIN
data/GDAS.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 514 KiB |
@ -16,7 +16,7 @@ def execute(cmds, idx, num):
|
||||
def command(prefix, cmd):
|
||||
#print ('{:}{:}'.format(prefix, cmd))
|
||||
#if execute: os.system(cmd)
|
||||
xcmd = '(echo {:}; {:}; sleep 0.1s)'.format(prefix, cmd)
|
||||
xcmd = '(echo {:} $(date +\"%Y-%h-%d--%T\") \"PID:\"$$; {:}; sleep 0.1s)'.format(prefix, cmd)
|
||||
return xcmd
|
||||
|
||||
|
||||
|
BIN
data/imagenet-results.png
Executable file
BIN
data/imagenet-results.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 139 KiB |
@ -19,14 +19,16 @@ else
|
||||
fi
|
||||
echo "CHECK-DATA-DIR DONE"
|
||||
|
||||
PID=$$
|
||||
|
||||
# config python
|
||||
PYTHON_ENV=py36_pytorch1.0_env0.1.3.tar.gz
|
||||
wget -e "http_proxy=cp01-sys-hic-gpu-02.cp01:8888" http://cp01-sys-hic-gpu-02.cp01/HGCP_DEMO/$PYTHON_ENV > screen.log 2>&1
|
||||
tar xzf $PYTHON_ENV
|
||||
|
||||
echo "JOB-PWD : " `pwd`
|
||||
echo "JOB-files : " `ls`
|
||||
echo "JOB-PID : "${PID}
|
||||
echo "JOB-PWD : "$(pwd)
|
||||
echo "JOB-files : "$(ls)
|
||||
echo "JOB-CUDA_VISIBLE_DEVICES: " ${CUDA_VISIBLE_DEVICES}
|
||||
|
||||
./env/bin/python --version
|
||||
|
@ -18,6 +18,7 @@ layers=$3
|
||||
SAVED=./output/NAS-CNN/${arch}-${dataset}-C${channels}-L${layers}-E250
|
||||
|
||||
PY_C="./env/bin/python"
|
||||
#PY_C="$CONDA_PYTHON_EXE"
|
||||
|
||||
if [ ! -f ${PY_C} ]; then
|
||||
echo "Local Run with Python: "`which python`
|
||||
@ -27,12 +28,23 @@ else
|
||||
echo "Unzip ILSVRC2012"
|
||||
tar --version
|
||||
#tar xf ./hadoop-data/ILSVRC2012.tar -C ${TORCH_HOME}
|
||||
#${PY_C} ./data/decompress.py ./hadoop-data/ILSVRC2012-TAR ./data/data/ILSVRC2012 tar > ./data/data/get_imagenet.sh
|
||||
${PY_C} ./data/decompress.py ./hadoop-data/ILSVRC2012-ZIP ./data/data/ILSVRC2012 zip > ./data/data/get_imagenet.sh
|
||||
bash ./data/data/get_imagenet.sh
|
||||
commands="./data/data/get_imagenet.sh"
|
||||
${PY_C} ./data/decompress.py ./hadoop-data/ILSVRC2012-TAR ./data/data/ILSVRC2012 tar > ${commands}
|
||||
#${PY_C} ./data/decompress.py ./hadoop-data/ILSVRC2012-ZIP ./data/data/ILSVRC2012 zip > ./data/data/get_imagenet.sh
|
||||
#bash ./data/data/get_imagenet.sh
|
||||
count=0
|
||||
while read -r line; do
|
||||
temp_file="./data/data/TEMP-${count}.sh"
|
||||
echo "${line}" > ${temp_file}
|
||||
bash ${temp_file}
|
||||
count=$((count+1))
|
||||
done < "${commands}"
|
||||
echo "Unzip ILSVRC2012 done"
|
||||
fi
|
||||
|
||||
exit 1
|
||||
|
||||
|
||||
${PY_C} --version
|
||||
|
||||
${PY_C} ./exps-cnn/train_base.py \
|
||||
|
Loading…
Reference in New Issue
Block a user