Update LFNA with resume
This commit is contained in:
		| @@ -101,21 +101,49 @@ def main(args): | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
|             int(args.epochs * 0.8), | ||||
|             int(args.epochs * 0.9), | ||||
|         ], | ||||
|         milestones=[1, 2], | ||||
|         gamma=0.1, | ||||
|     ) | ||||
|     logger.log("The base-model is\n{:}".format(base_model)) | ||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||
|     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||
|     logger.log("The scheduler is\n{:}".format(lr_scheduler)) | ||||
|     logger.log("Per epoch iterations = {:}".format(len(env_loader))) | ||||
|  | ||||
|     # LFNA meta-training | ||||
|     if logger.path("model").exists(): | ||||
|         ckp_data = torch.load(logger.path("model")) | ||||
|         base_model.load_state_dict(ckp_data["base_model"]) | ||||
|         meta_model.load_state_dict(ckp_data["meta_model"]) | ||||
|         optimizer.load_state_dict(ckp_data["optimizer"]) | ||||
|         lr_scheduler.load_state_dict(ckp_data["lr_scheduler"]) | ||||
|         last_success_epoch = ckp_data["last_success_epoch"] | ||||
|         start_epoch = ckp_data["iepoch"] + 1 | ||||
|         check_strs = [ | ||||
|             "epochs", | ||||
|             "env_version", | ||||
|             "hidden_dim", | ||||
|             "init_lr", | ||||
|             "layer_dim", | ||||
|             "time_dim", | ||||
|             "seq_length", | ||||
|         ] | ||||
|         for xstr in check_strs: | ||||
|             cx = getattr(args, xstr) | ||||
|             px = getattr(ckp_data["args"], xstr) | ||||
|             assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps) | ||||
|         success, _ = meta_model.save_best(ckp_data["cur_score"]) | ||||
|         logger.log("Load ckp from {:}".format(logger.path("model"))) | ||||
|         if success: | ||||
|             logger.log( | ||||
|                 "Re-save the best model with score={:}".format(ckp_data["cur_score"]) | ||||
|             ) | ||||
|     else: | ||||
|         start_epoch, last_success_epoch = 0, 0 | ||||
|  | ||||
|     # LFNA meta-train | ||||
|     meta_model.set_best_dir(logger.path(None) / "checkpoint") | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     last_success_epoch = 0 | ||||
|     for iepoch in range(args.epochs): | ||||
|     for iepoch in range(start_epoch, args.epochs): | ||||
|  | ||||
|         head_str = "[{:}] [{:04d}/{:04d}] ".format( | ||||
|             time_string(), iepoch, args.epochs | ||||
| @@ -132,11 +160,11 @@ def main(args): | ||||
|             args.device, | ||||
|             logger, | ||||
|         ) | ||||
|         lr_scheduler.step() | ||||
|         logger.log( | ||||
|             head_str | ||||
|             + " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter) | ||||
|             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||
|             + "  :: last-success={:}".format(last_success_epoch) | ||||
|         ) | ||||
|         success, best_score = meta_model.save_best(-loss_meter.avg) | ||||
|         if success: | ||||
| @@ -145,8 +173,11 @@ def main(args): | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "meta_model": meta_model.state_dict(), | ||||
|                     "base_model": base_model.state_dict(), | ||||
|                     "optimizer": optimizer.state_dict(), | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "last_success_epoch": last_success_epoch, | ||||
|                     "cur_score": -loss_meter.avg, | ||||
|                     "iepoch": iepoch, | ||||
|                     "args": args, | ||||
|                 }, | ||||
| @@ -154,8 +185,12 @@ def main(args): | ||||
|                 logger, | ||||
|             ) | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||
|             logger.log("Early stop at {:}".format(iepoch)) | ||||
|             break | ||||
|             if lr_scheduler.last_epoch > 2: | ||||
|                 logger.log("Early stop at {:}".format(iepoch)) | ||||
|                 break | ||||
|             else: | ||||
|                 last_epoch.step() | ||||
|                 logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch)) | ||||
|  | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
| @@ -199,7 +234,7 @@ def main(args): | ||||
|             [new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|         ) | ||||
|         meta_model.replace_append_learnt( | ||||
|             torch.Tensor([future_time], device=args.device), new_param | ||||
|             torch.Tensor([future_time]).to(args.device), new_param | ||||
|         ) | ||||
|         meta_model.eval() | ||||
|         base_model.train() | ||||
| @@ -289,8 +324,8 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=100, | ||||
|         help="The maximum epochs for early stop.", | ||||
|         default=50, | ||||
|         help="The #epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seq_length", type=int, default=5, help="The sequence length." | ||||
|   | ||||
| @@ -102,9 +102,11 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         return torch.cat(meta_embed) | ||||
|  | ||||
|     def create_meta_embed(self): | ||||
|         param = torch.nn.Parameter(torch.Tensor(1, self._time_embed_dim)) | ||||
|         param = torch.Tensor(1, self._time_embed_dim) | ||||
|         trunc_normal_(param, std=0.02) | ||||
|         return param.to(self._super_meta_embed.device) | ||||
|         param = param.to(self._super_meta_embed.device) | ||||
|         param = torch.nn.Parameter(param, True) | ||||
|         return param | ||||
|  | ||||
|     def get_closest_meta_distance(self, timestamp): | ||||
|         with torch.no_grad(): | ||||
| @@ -112,12 +114,14 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|             return torch.min(distances).item() | ||||
|  | ||||
|     def replace_append_learnt(self, timestamp, meta_embed): | ||||
|         self._append_meta_embed["learnt"] = meta_embed | ||||
|         self._append_meta_timestamps["learnt"] = timestamp | ||||
|         self._append_meta_embed["learnt"] = meta_embed | ||||
|  | ||||
|     def append_fixed(self, timestamp, meta_embed): | ||||
|         with torch.no_grad(): | ||||
|             timestamp, meta_embed = timestamp.clone(), meta_embed.clone() | ||||
|             device = self._super_meta_embed.device | ||||
|             timestamp = timestamp.detach().clone().to(device) | ||||
|             meta_embed = meta_embed.detach().clone().to(device) | ||||
|             if self._append_meta_timestamps["fixed"] is None: | ||||
|                 self._append_meta_timestamps["fixed"] = timestamp | ||||
|             else: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user