Update TuNAS
This commit is contained in:
parent
0b0643c820
commit
df45e68366
@ -8,6 +8,10 @@
|
||||
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
|
||||
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
|
||||
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777
|
||||
####
|
||||
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0
|
||||
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777
|
||||
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777
|
||||
######################################################################################
|
||||
import os, sys, time, random, argparse
|
||||
import numpy as np
|
||||
@ -26,7 +30,28 @@ from models import get_cell_based_tiny_net, get_search_spaces
|
||||
from nas_201_api import NASBench301API as API
|
||||
|
||||
|
||||
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
|
||||
# Ad-hoc for TuNAS
|
||||
class ExponentialMovingAverage(object):
|
||||
"""Class that maintains an exponential moving average."""
|
||||
|
||||
def __init__(self, momentum):
|
||||
self._numerator = 0
|
||||
self._denominator = 0
|
||||
self._momentum = momentum
|
||||
|
||||
def update(self, value):
|
||||
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
|
||||
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
||||
|
||||
@property
|
||||
def value(self):
|
||||
"""Return the current value of the moving average"""
|
||||
return self._numerator / self._denominator
|
||||
|
||||
RL_BASELINE_EMA = ExponentialMovingAverage(0.95)
|
||||
|
||||
|
||||
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, algo, epoch_str, print_freq, logger):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
@ -43,7 +68,7 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
||||
|
||||
# Update the weights
|
||||
network.zero_grad()
|
||||
_, logits = network(base_inputs)
|
||||
_, logits, _ = network(base_inputs)
|
||||
base_loss = criterion(logits, base_targets)
|
||||
base_loss.backward()
|
||||
w_optimizer.step()
|
||||
@ -55,12 +80,21 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
||||
|
||||
# update the architecture-weight
|
||||
network.zero_grad()
|
||||
_, logits = network(arch_inputs)
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
_, logits, log_probs = network(arch_inputs)
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
if algo == 'tunas':
|
||||
with torch.no_grad():
|
||||
RL_BASELINE_EMA.update(arch_prec1.item())
|
||||
rl_advantage = arch_prec1 - RL_BASELINE_EMA.value
|
||||
rl_log_prob = sum(log_probs)
|
||||
arch_loss = - rl_advantage * rl_log_prob
|
||||
elif algo == 'tas' or algo == 'fbv2':
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
else:
|
||||
raise ValueError('invalid algorightm name: {:}'.format(algo))
|
||||
arch_loss.backward()
|
||||
a_optimizer.step()
|
||||
# record
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
||||
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
||||
@ -78,76 +112,6 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
||||
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
||||
|
||||
|
||||
def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger):
|
||||
# config. (containing some necessary arg)
|
||||
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
|
||||
|
||||
controller_num_aggregate = 20
|
||||
controller_train_steps = 50
|
||||
controller_bl_dec = 0.99
|
||||
controller_entropy_weight = 0.0001
|
||||
|
||||
network.eval()
|
||||
network.controller.train()
|
||||
network.controller.zero_grad()
|
||||
loader_iter = iter(xloader)
|
||||
for step in range(controller_train_steps * controller_num_aggregate):
|
||||
try:
|
||||
inputs, targets = next(loader_iter)
|
||||
except:
|
||||
loader_iter = iter(xloader)
|
||||
inputs, targets = next(loader_iter)
|
||||
inputs = inputs.cuda(non_blocking=True)
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - xend)
|
||||
|
||||
log_prob, entropy, sampled_arch = network.controller()
|
||||
with torch.no_grad():
|
||||
network.set_cal_mode('dynamic', sampled_arch)
|
||||
_, logits = network(inputs)
|
||||
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||
val_top1 = val_top1.view(-1) / 100
|
||||
reward = val_top1 + controller_entropy_weight * entropy
|
||||
if prev_baseline is None:
|
||||
baseline = val_top1
|
||||
else:
|
||||
baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward)
|
||||
|
||||
loss = -1 * log_prob * (reward - baseline)
|
||||
|
||||
# account
|
||||
RewardMeter.update(reward.item())
|
||||
BaselineMeter.update(baseline.item())
|
||||
ValAccMeter.update(val_top1.item()*100)
|
||||
LossMeter.update(loss.item())
|
||||
EntropyMeter.update(entropy.item())
|
||||
|
||||
# Average gradient over controller_num_aggregate samples
|
||||
loss = loss / controller_num_aggregate
|
||||
loss.backward(retain_graph=True)
|
||||
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - xend)
|
||||
xend = time.time()
|
||||
if (step+1) % controller_num_aggregate == 0:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0)
|
||||
GradnormMeter.update(grad_norm)
|
||||
optimizer.step()
|
||||
network.controller.zero_grad()
|
||||
|
||||
if step % print_freq == 0:
|
||||
Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate)
|
||||
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
|
||||
Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
|
||||
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
|
||||
|
||||
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg
|
||||
|
||||
|
||||
def valid_func(xloader, network, criterion, logger):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
@ -159,7 +123,7 @@ def valid_func(xloader, network, criterion, logger):
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
# prediction
|
||||
_, logits = network(arch_inputs.cuda(non_blocking=True))
|
||||
_, logits, _ = network(arch_inputs.cuda(non_blocking=True))
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
# record
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
@ -211,9 +175,9 @@ def main(xargs):
|
||||
params = count_parameters_in_MB(search_model)
|
||||
logger.log('The parameters of the search model = {:.2f} MB'.format(params))
|
||||
logger.log('search-space : {:}'.format(search_space))
|
||||
try:
|
||||
if bool(xargs.use_api):
|
||||
api = API(verbose=False)
|
||||
except:
|
||||
else:
|
||||
api = None
|
||||
logger.log('{:} create API = {:} done'.format(time_string(), api))
|
||||
|
||||
@ -250,7 +214,7 @@ def main(xargs):
|
||||
network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) )
|
||||
logger.log('[RESET tau as : {:}]'.format(network.tau))
|
||||
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
|
||||
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
|
||||
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, xargs.algo, epoch_str, xargs.print_freq, logger)
|
||||
search_time.update(time.time() - start_time)
|
||||
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
||||
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
||||
@ -305,8 +269,9 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--data_path' , type=str, help='Path to dataset')
|
||||
parser.add_argument('--dataset' , type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
parser.add_argument('--search_space', type=str, default='sss', choices=['sss'], help='The search space name.')
|
||||
parser.add_argument('--algo' , type=str, choices=['tas', 'fbv2', 'enas'], help='The search space name.')
|
||||
parser.add_argument('--algo' , type=str, choices=['tas', 'fbv2', 'tunas'], help='The search space name.')
|
||||
parser.add_argument('--genotype' , type=str, default='|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|', help='The genotype.')
|
||||
parser.add_argument('--use_api' , type=int, default=1, choices=[0,1], help='Whether use API or not (which will cost much memory).')
|
||||
# FOR GDAS
|
||||
parser.add_argument('--tau_min', type=float, default=0.1, help='The minimum tau for Gumbel Softmax.')
|
||||
parser.add_argument('--tau_max', type=float, default=10, help='The maximum tau for Gumbel Softmax.')
|
||||
|
@ -29,8 +29,8 @@ from log_utils import time_string
|
||||
def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
ss_dir = '{:}-{:}'.format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
seeds = [777]
|
||||
if search_space == 'tss':
|
||||
seeds = [777]
|
||||
alg2name['GDAS'] = 'gdas-affine0_BN0-None'
|
||||
alg2name['RSPS'] = 'random-affine0_BN0-None'
|
||||
alg2name['DARTS (1st)'] = 'darts-v1-affine0_BN0-None'
|
||||
@ -38,8 +38,10 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
alg2name['ENAS'] = 'enas-affine0_BN0-None'
|
||||
alg2name['SETN'] = 'setn-affine0_BN0-None'
|
||||
else:
|
||||
seeds = [777, 888, 999]
|
||||
alg2name['TAS'] = 'tas-affine0_BN0'
|
||||
alg2name['FBNetV2'] = 'fbv2-affine0_BN0'
|
||||
alg2name['TuNAS'] = 'tunas-affine0_BN0'
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'seed-{:}-last-info.pth')
|
||||
alg2data = OrderedDict()
|
||||
@ -84,7 +86,7 @@ def visualize_curve(api, vis_save_dir, search_space):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
epochs = 100
|
||||
colors = ['b', 'g', 'c', 'm', 'y']
|
||||
colors = ['b', 'g', 'c', 'm', 'y', 'r']
|
||||
ax.set_xlim(0, epochs)
|
||||
# ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
|
@ -47,10 +47,10 @@ class GenericNAS301Model(nn.Module):
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, 'This functioin can only be called once.'
|
||||
assert algo in ['fbv2', 'enas', 'tas'], 'invalid algo : {:}'.format(algo)
|
||||
assert algo in ['fbv2', 'tunas', 'tas'], 'invalid algo : {:}'.format(algo)
|
||||
self._algo = algo
|
||||
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
|
||||
if algo == 'fbv2' or algo == 'enas':
|
||||
if algo == 'fbv2' or algo == 'tunas':
|
||||
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, :self._candidate_Cs[i]] = 1
|
||||
@ -106,15 +106,17 @@ class GenericNAS301Model(nn.Module):
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = inputs
|
||||
|
||||
log_probs = []
|
||||
for i, cell in enumerate(self._cells):
|
||||
feature = cell(feature)
|
||||
# apply different searching algorithms
|
||||
idx = max(0, i-1)
|
||||
if self._algo == 'fbv2':
|
||||
idx = max(0, i-1)
|
||||
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
|
||||
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
elif self._algo == 'tas':
|
||||
idx = max(0, i-1)
|
||||
selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2)
|
||||
with torch.no_grad():
|
||||
i1, i2 = selected_cs.cpu().view(-1).tolist()
|
||||
@ -128,6 +130,13 @@ class GenericNAS301Model(nn.Module):
|
||||
else:
|
||||
miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device)
|
||||
feature = torch.cat((out, miss), dim=1)
|
||||
elif self._algo == 'tunas':
|
||||
prob = nn.functional.softmax(self._arch_parameters[idx:idx+1], dim=-1)
|
||||
dist = torch.distributions.Categorical(prob)
|
||||
action = dist.sample()
|
||||
log_probs.append(dist.log_prob(action))
|
||||
mask = self._masks[action.item()].view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
else:
|
||||
raise ValueError('invalid algorithm : {:}'.format(self._algo))
|
||||
|
||||
@ -136,4 +145,4 @@ class GenericNAS301Model(nn.Module):
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
||||
return out, logits, log_probs
|
||||
|
@ -60,6 +60,7 @@ class NASBench301API(NASBenchMetaAPI):
|
||||
self.reset_time()
|
||||
if file_path_or_dict is None:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
|
||||
print ('Try to use the default NAS-Bench-301 path from {:}.'.format(file_path_or_dict))
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
|
||||
|
Loading…
Reference in New Issue
Block a user