Add MobileNetV2
This commit is contained in:
parent
d70b3c528c
commit
e29c86d479
24
exps/experimental/test-flops.py
Normal file
24
exps/experimental/test-flops.py
Normal file
@ -0,0 +1,24 @@
|
||||
import sys, time, random, argparse
|
||||
from copy import deepcopy
|
||||
import torchvision.models as models
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from utils import get_model_infos
|
||||
#from models.ImageNet_MobileNetV2 import MobileNetV2
|
||||
from torchvision.models.mobilenet import MobileNetV2
|
||||
|
||||
def main(width_mult):
|
||||
# model = MobileNetV2(1001, width_mult, 32, 1280, 'InvertedResidual', 0.2)
|
||||
model = MobileNetV2(width_mult=width_mult)
|
||||
print(model)
|
||||
flops, params = get_model_infos(model, (2, 3, 224, 224))
|
||||
print('FLOPs : {:}'.format(flops))
|
||||
print('Params : {:}'.format(params))
|
||||
print('-'*50)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(1.0)
|
||||
main(1.4)
|
101
lib/models/ImageNet_MobileNetV2.py
Normal file
101
lib/models/ImageNet_MobileNetV2.py
Normal file
@ -0,0 +1,101 @@
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
|
||||
self.bn = nn.BatchNorm2d(out_planes)
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv( x )
|
||||
out = self.bn ( out )
|
||||
out = self.relu( out )
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(inp * expand_ratio))
|
||||
self.use_res_connect = self.stride == 1 and inp == oup
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# pw
|
||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
])
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout):
|
||||
super(MobileNetV2, self).__init__()
|
||||
if block_name == 'InvertedResidual':
|
||||
block = InvertedResidual
|
||||
else:
|
||||
raise ValueError('invalid block name : {:}'.format(block_name))
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16 , 1, 1],
|
||||
[6, 24 , 2, 2],
|
||||
[6, 32 , 3, 2],
|
||||
[6, 64 , 4, 2],
|
||||
[6, 96 , 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# building first layer
|
||||
input_channel = int(input_channel * width_mult)
|
||||
self.last_channel = int(last_channel * max(1.0, width_mult))
|
||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in inverted_residual_setting:
|
||||
output_channel = int(c * width_mult)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.last_channel, num_classes),
|
||||
)
|
||||
self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout)
|
||||
|
||||
# weight initialization
|
||||
self.apply( initialize_resnet )
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
@ -110,8 +110,11 @@ def get_imagenet_models(config):
|
||||
super_type = getattr(config, 'super_type', 'basic')
|
||||
if super_type == 'basic':
|
||||
from .ImagenetResNet import ResNet
|
||||
from .ImageNet_MobileNetV2 import MobileNetV2
|
||||
if config.arch == 'resnet':
|
||||
return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group)
|
||||
elif config.arch == 'mobilenet_v2':
|
||||
return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout)
|
||||
else:
|
||||
raise ValueError('invalid arch : {:}'.format( config.arch ))
|
||||
elif super_type.startswith('infer'): # NAS searched architecture
|
||||
|
Loading…
Reference in New Issue
Block a user