Reformulate via black
This commit is contained in:
		| @@ -4,313 +4,492 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08           # | ||||
| ############################################################### | ||||
| import os, sys, time, torch, random, argparse | ||||
| from PIL     import ImageFile | ||||
| from PIL import ImageFile | ||||
|  | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config | ||||
| from procedures   import save_checkpoint, copy_checkpoint | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models       import CellStructure, CellArchitectures, get_search_spaces | ||||
| from functions    import evaluate_for_seed | ||||
| from procedures import save_checkpoint, copy_checkpoint | ||||
| from procedures import get_machine_info | ||||
| from datasets import get_datasets | ||||
| from log_utils import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models import CellStructure, CellArchitectures, get_search_spaces | ||||
| from functions import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): | ||||
|   machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the datasets | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # train valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configuration | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|     all_infos = {"info": machine_info} | ||||
|     all_dataset_keys = [] | ||||
|     # look all the datasets | ||||
|     for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|         # train valid data | ||||
|         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|         # load the configuration | ||||
|         if dataset == "cifar10" or dataset == "cifar100": | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/CIFAR.config" | ||||
|             split_info = load_config("configs/nas-benchmark/cifar-split.txt", None, None) | ||||
|         elif dataset.startswith("ImageNet16"): | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|             split_info = load_config("configs/nas-benchmark/{:}-split.txt".format(dataset), None, None) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|         config = load_config(config_path, {"class_num": class_num, "xshape": xshape}, logger) | ||||
|         # check whether use splited validation set | ||||
|         if bool(split): | ||||
|             assert dataset == "cifar10" | ||||
|             ValLoaders = { | ||||
|                 "ori-test": torch.utils.data.DataLoader( | ||||
|                     valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                 ) | ||||
|             } | ||||
|             assert len(train_data) == len(split_info.train) + len( | ||||
|                 split_info.valid | ||||
|             ), "invalid length : {:} vs {:} + {:}".format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|             train_data_v2 = deepcopy(train_data) | ||||
|             train_data_v2.transform = valid_data.transform | ||||
|             valid_data = train_data_v2 | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             ValLoaders["x-valid"] = valid_loader | ||||
|         else: | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|             ) | ||||
|             if dataset == "cifar10": | ||||
|                 ValLoaders = {"ori-test": valid_loader} | ||||
|             elif dataset == "cifar100": | ||||
|                 cifar100_splits = load_config("configs/nas-benchmark/cifar100-test-split.txt", None, None) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             elif dataset == "ImageNet16-120": | ||||
|                 imagenet16_splits = load_config("configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             else: | ||||
|                 raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|  | ||||
|         dataset_key = "{:}".format(dataset) | ||||
|         if bool(split): | ||||
|             dataset_key = dataset_key + "-valid" | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | ||||
|                 dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)) | ||||
|         for key, value in ValLoaders.items(): | ||||
|             logger.log("Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))) | ||||
|         results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|         all_infos[dataset_key] = results | ||||
|         all_dataset_keys.append(dataset_key) | ||||
|     all_infos["all_dataset_keys"] = all_dataset_keys | ||||
|     return all_infos | ||||
|  | ||||
|  | ||||
| def main( | ||||
|     save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     # torch.backends.cudnn.benchmark = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|     assert len(srange) == 2 and 0 <= srange[0] <= srange[1], "invalid srange : {:}".format(srange) | ||||
|  | ||||
|     if use_less: | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format( | ||||
|             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, \ | ||||
|                             {'class_num': class_num, | ||||
|                              'xshape'   : xshape}, \ | ||||
|                             logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format( | ||||
|             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     logger = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|     all_archs = meta_info["archs"] | ||||
|     assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format( | ||||
|         srange[0], srange[1], meta_info["total"] | ||||
|     ) | ||||
|     assert arch_index == -1 or srange[0] <= arch_index <= srange[1], "invalid range : {:} vs. {:} vs. {:}".format( | ||||
|         srange[0], arch_index, srange[1] | ||||
|     ) | ||||
|     if arch_index == -1: | ||||
|         to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|         to_evaluate_indexes = [arch_index] | ||||
|     logger.log("xargs : seeds      = {:}".format(seeds)) | ||||
|     logger.log("xargs : arch_index = {:}".format(arch_index)) | ||||
|     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | ||||
|     logger.log("-" * 100) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|     logger.log( | ||||
|         "Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}".format( | ||||
|             srange[0], arch_index, srange[1], meta_info["total"], cover_mode | ||||
|         ) | ||||
|     ) | ||||
|     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|         logger.log( | ||||
|             "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( | ||||
|                 i, len(datasets), dataset, xpath, split | ||||
|             ) | ||||
|         ) | ||||
|     logger.log("--->>> architecture config : {:}".format(arch_config)) | ||||
|  | ||||
|     start_time, epoch_time = time.time(), AverageMeter() | ||||
|     for i, index in enumerate(to_evaluate_indexes): | ||||
|         arch = all_archs[index] | ||||
|         logger.log( | ||||
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format( | ||||
|                 "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seeds, "-" * 15 | ||||
|             ) | ||||
|         ) | ||||
|         # logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|         logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) | ||||
|  | ||||
| def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( workers ) | ||||
|         # test this arch on different datasets with different seeds | ||||
|         has_continue = False | ||||
|         for seed in seeds: | ||||
|             to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | ||||
|             if to_save_name.exists(): | ||||
|                 if cover_mode: | ||||
|                     logger.log("Find existing file : {:}, remove it before evaluation".format(to_save_name)) | ||||
|                     os.remove(str(to_save_name)) | ||||
|                 else: | ||||
|                     logger.log("Find existing file : {:}, skip this evaluation".format(to_save_name)) | ||||
|                     has_continue = True | ||||
|                     continue | ||||
|             results = evaluate_all_datasets( | ||||
|                 CellStructure.str2structure(arch), | ||||
|                 datasets, | ||||
|                 xpaths, | ||||
|                 splits, | ||||
|                 use_less, | ||||
|                 seed, | ||||
|                 arch_config, | ||||
|                 workers, | ||||
|                 logger, | ||||
|             ) | ||||
|             torch.save(results, to_save_name) | ||||
|             logger.log( | ||||
|                 "{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format( | ||||
|                     "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seed, to_save_name | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
|         if not has_continue: | ||||
|             epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | ||||
|         ) | ||||
|         logger.log("This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|         logger.log( | ||||
|             "{:}   {:74s}   {:}".format( | ||||
|                 "*" * 10, | ||||
|                 "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( | ||||
|                     i, len(to_evaluate_indexes), index, meta_info["total"], need_time | ||||
|                 ), | ||||
|                 "*" * 10, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|  | ||||
|   assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) | ||||
|    | ||||
|   if use_less: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   else: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   logger  = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|   all_archs = meta_info['archs'] | ||||
|   assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) | ||||
|   assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) | ||||
|   if arch_index == -1: | ||||
|     to_evaluate_indexes = list(range(srange[0], srange[1]+1)) | ||||
|   else: | ||||
|     to_evaluate_indexes = [arch_index] | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : arch_index = {:}'.format(arch_index)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> architecture config : {:}'.format(arch_config)) | ||||
|    | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     arch = all_archs[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) | ||||
|     #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|     logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) | ||||
|    | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else         : | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(CellStructure.str2structure(arch), \ | ||||
|                                         datasets, xpaths, splits, use_less, seed, \ | ||||
|                                         arch_config, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) | ||||
|     logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|  | ||||
|   logger.close() | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.set_num_threads( workers ) | ||||
|    | ||||
|   save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}-{:}'.format('LESS' if use_less else 'FULL', model_str, arch_config['channel'], arch_config['num_cells']) | ||||
|   logger   = Logger(str(save_dir), 0, False) | ||||
|   if model_str in CellArchitectures: | ||||
|     arch   = CellArchitectures[model_str] | ||||
|     logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) | ||||
|   else: | ||||
|     try: | ||||
|       arch = CellStructure.str2structure(model_str) | ||||
|     except: | ||||
|       raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) | ||||
|   assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) | ||||
|   logger.log('Start train-evaluate {:}'.format(arch.tostr())) | ||||
|   logger.log('arch_config : {:}'.format(arch_config)) | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     # torch.backends.cudnn.benchmark = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|   start_time, seed_time = time.time(), AverageMeter() | ||||
|   for _is, seed in enumerate(seeds): | ||||
|     logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) | ||||
|     to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) | ||||
|     if to_save_name.exists(): | ||||
|       logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) | ||||
|       checkpoint = torch.load(to_save_name) | ||||
|     save_dir = ( | ||||
|         Path(save_dir) | ||||
|         / "specifics" | ||||
|         / "{:}-{:}-{:}-{:}".format( | ||||
|             "LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     ) | ||||
|     logger = Logger(str(save_dir), 0, False) | ||||
|     if model_str in CellArchitectures: | ||||
|         arch = CellArchitectures[model_str] | ||||
|         logger.log("The model string is found in pre-defined architecture dict : {:}".format(model_str)) | ||||
|     else: | ||||
|       logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger) | ||||
|       torch.save(checkpoint, to_save_name) | ||||
|     # log information | ||||
|     logger.log('{:}'.format(checkpoint['info'])) | ||||
|     all_dataset_keys = checkpoint['all_dataset_keys'] | ||||
|     for dataset_key in all_dataset_keys: | ||||
|       logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) | ||||
|       dataset_info = checkpoint[dataset_key] | ||||
|       #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|       logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) | ||||
|       logger.log('config : {:}'.format(dataset_info['config'])) | ||||
|       logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) | ||||
|       last_epoch = dataset_info['total_epoch'] - 1 | ||||
|       train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] | ||||
|       valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] | ||||
|       logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) | ||||
|     # measure elapsed time | ||||
|     seed_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) | ||||
|     logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time)) | ||||
|   logger.close() | ||||
|         try: | ||||
|             arch = CellStructure.str2structure(model_str) | ||||
|         except: | ||||
|             raise ValueError("Invalid model string : {:}. It can not be found or parsed.".format(model_str)) | ||||
|     assert arch.check_valid_op(get_search_spaces("cell", "full")), "{:} has the invalid op.".format(arch) | ||||
|     logger.log("Start train-evaluate {:}".format(arch.tostr())) | ||||
|     logger.log("arch_config : {:}".format(arch_config)) | ||||
|  | ||||
|     start_time, seed_time = time.time(), AverageMeter() | ||||
|     for _is, seed in enumerate(seeds): | ||||
|         logger.log( | ||||
|             "\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format( | ||||
|                 _is, len(seeds), seed | ||||
|             ) | ||||
|         ) | ||||
|         to_save_name = save_dir / "seed-{:04d}.pth".format(seed) | ||||
|         if to_save_name.exists(): | ||||
|             logger.log("Find the existing file {:}, directly load!".format(to_save_name)) | ||||
|             checkpoint = torch.load(to_save_name) | ||||
|         else: | ||||
|             logger.log("Does not find the existing file {:}, train and evaluate!".format(to_save_name)) | ||||
|             checkpoint = evaluate_all_datasets( | ||||
|                 arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | ||||
|             ) | ||||
|             torch.save(checkpoint, to_save_name) | ||||
|         # log information | ||||
|         logger.log("{:}".format(checkpoint["info"])) | ||||
|         all_dataset_keys = checkpoint["all_dataset_keys"] | ||||
|         for dataset_key in all_dataset_keys: | ||||
|             logger.log("\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15)) | ||||
|             dataset_info = checkpoint[dataset_key] | ||||
|             # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|             logger.log("Flops = {:} MB, Params = {:} MB".format(dataset_info["flop"], dataset_info["param"])) | ||||
|             logger.log("config : {:}".format(dataset_info["config"])) | ||||
|             logger.log("Training State (finish) = {:}".format(dataset_info["finish-train"])) | ||||
|             last_epoch = dataset_info["total_epoch"] - 1 | ||||
|             train_acc1es, train_acc5es = dataset_info["train_acc1es"], dataset_info["train_acc5es"] | ||||
|             valid_acc1es, valid_acc5es = dataset_info["valid_acc1es"], dataset_info["valid_acc5es"] | ||||
|             logger.log( | ||||
|                 "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( | ||||
|                     train_acc1es[last_epoch], | ||||
|                     train_acc5es[last_epoch], | ||||
|                     100 - train_acc1es[last_epoch], | ||||
|                     valid_acc1es[last_epoch], | ||||
|                     valid_acc5es[last_epoch], | ||||
|                     100 - valid_acc1es[last_epoch], | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
|         seed_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format(convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)) | ||||
|         logger.log( | ||||
|             "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format( | ||||
|                 _is, len(seeds), seed, need_time | ||||
|             ) | ||||
|         ) | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|     aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") | ||||
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|     print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   # to test fixed-random shuffle  | ||||
|   #print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|   #print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   total_arch = len(archs) | ||||
|    | ||||
|   num = 50000 | ||||
|   indexes_5W = list(range(num)) | ||||
|   random.seed( 1021 ) | ||||
|   random.shuffle( indexes_5W ) | ||||
|   train_split = sorted( list(set(indexes_5W[:num//2])) ) | ||||
|   valid_split = sorted( list(set(indexes_5W[num//2:])) ) | ||||
|   assert len(train_split) + len(valid_split) == num | ||||
|   assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) | ||||
|   splits = {num: {'train': train_split, 'valid': valid_split} } | ||||
|     random.seed(88)  # please do not change this line for reproducibility | ||||
|     random.shuffle(archs) | ||||
|     # to test fixed-random shuffle | ||||
|     # print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|     # print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|     assert ( | ||||
|         archs[0].tostr() | ||||
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | ||||
|     ), "please check the 0-th architecture : {:}".format(archs[0]) | ||||
|     assert ( | ||||
|         archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 9-th architecture : {:}".format(archs[9]) | ||||
|     assert ( | ||||
|         archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 123-th architecture : {:}".format(archs[123]) | ||||
|     total_arch = len(archs) | ||||
|  | ||||
|   info = {'archs' : [x.tostr() for x in archs], | ||||
|           'total' : total_arch, | ||||
|           'max_node' : max_node, | ||||
|           'splits': splits} | ||||
|     num = 50000 | ||||
|     indexes_5W = list(range(num)) | ||||
|     random.seed(1021) | ||||
|     random.shuffle(indexes_5W) | ||||
|     train_split = sorted(list(set(indexes_5W[: num // 2]))) | ||||
|     valid_split = sorted(list(set(indexes_5W[num // 2 :]))) | ||||
|     assert len(train_split) + len(valid_split) == num | ||||
|     assert ( | ||||
|         train_split[0] == 0 | ||||
|         and train_split[10] == 26 | ||||
|         and train_split[111] == 203 | ||||
|         and valid_split[0] == 1 | ||||
|         and valid_split[10] == 18 | ||||
|         and valid_split[111] == 242 | ||||
|     ), "{:} {:} {:} - {:} {:} {:}".format( | ||||
|         train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111] | ||||
|     ) | ||||
|     splits = {num: {"train": train_split, "valid": valid_split}} | ||||
|  | ||||
|   save_dir = Path(save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) | ||||
|   assert not save_name.exists(), '{:} already exist'.format(save_name) | ||||
|   torch.save(info, save_name) | ||||
|   print ('save the meta file into {:}'.format(save_name)) | ||||
|     info = {"archs": [x.tostr() for x in archs], "total": total_arch, "max_node": max_node, "splits": splits} | ||||
|  | ||||
|   script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node) | ||||
|   script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node) | ||||
|   full_file = open(str(script_name_full), 'w') | ||||
|   less_file = open(str(script_name_less), 'w') | ||||
|   gaps = total_arch // divide | ||||
|   for start in range(0, total_arch, gaps): | ||||
|     xend = min(start+gaps, total_arch) | ||||
|     full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|   print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less)) | ||||
|   full_file.close() | ||||
|   less_file.close() | ||||
|     save_dir = Path(save_dir) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     save_name = save_dir / "meta-node-{:}.pth".format(max_node) | ||||
|     assert not save_name.exists(), "{:} already exist".format(save_name) | ||||
|     torch.save(info, save_name) | ||||
|     print("save the meta file into {:}".format(save_name)) | ||||
|  | ||||
|   script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node) | ||||
|   macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0' | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(max_node) | ||||
|     script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(max_node) | ||||
|     full_file = open(str(script_name_full), "w") | ||||
|     less_file = open(str(script_name_less), "w") | ||||
|     gaps = total_arch // divide | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|   print ('save the post-processing script into {:}'.format(script_name)) | ||||
|         xend = min(start + gaps, total_arch) | ||||
|         full_file.write( | ||||
|             "bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n".format( | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|         less_file.write( | ||||
|             "bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n".format( | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|     print("save the training script into {:} and {:}".format(script_name_full, script_name_less)) | ||||
|     full_file.close() | ||||
|     less_file.close() | ||||
|  | ||||
|     script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node) | ||||
|     macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0" | ||||
|     with open(str(script_name), "w") as cfile: | ||||
|         for start in range(0, total_arch, gaps): | ||||
|             xend = min(start + gaps, total_arch) | ||||
|             cfile.write( | ||||
|                 "{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n".format( | ||||
|                     macro, start, xend - 1 | ||||
|                 ) | ||||
|             ) | ||||
|     print("save the post-processing script into {:}".format(script_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   #parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,                   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,                   help='The maximum node in a cell.') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int,   default=8,      help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--arch_index',  type=int,   default=-1,     help='The architecture index to be evaluated (cover mode).') | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--use_less',    type=int,   default=0, choices=[0,1], help='Using the less-training-epoch config.') | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--channel',     type=int,                   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',   type=int,                   help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
| if __name__ == "__main__": | ||||
|     # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|     # parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-Bench-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, required=True, help="The script mode.") | ||||
|     parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.") | ||||
|     parser.add_argument("--max_node", type=int, help="The maximum node in a cell.") | ||||
|     # use for train the model | ||||
|     parser.add_argument("--workers", type=int, default=8, help="number of data loading workers (default: 2)") | ||||
|     parser.add_argument("--srange", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument( | ||||
|         "--arch_index", type=int, default=-1, help="The architecture index to be evaluated (cover mode)." | ||||
|     ) | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument("--xpaths", type=str, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--splits", type=int, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--use_less", type=int, default=0, choices=[0, 1], help="Using the less-training-epoch config.") | ||||
|     parser.add_argument("--seeds", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument("--channel", type=int, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith("specific-"), "invalid mode : {:}".format( | ||||
|         args.mode | ||||
|     ) | ||||
|  | ||||
|   if args.mode == 'meta': | ||||
|     generate_meta_info(args.save_dir, args.max_node) | ||||
|   elif args.mode.startswith('specific'): | ||||
|     assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) | ||||
|     model_str = args.mode.split('-')[1] | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|                          tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   else: | ||||
|     meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|     assert meta_path.exists(), '{:} does not exist.'.format(meta_path) | ||||
|     meta_info = torch.load( meta_path ) | ||||
|     # check whether args is ok | ||||
|     assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) | ||||
|     assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|     assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|     assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|            tuple(args.srange), args.arch_index, tuple(args.seeds), \ | ||||
|            args.mode == 'cover', meta_info, \ | ||||
|            {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|     if args.mode == "meta": | ||||
|         generate_meta_info(args.save_dir, args.max_node) | ||||
|     elif args.mode.startswith("specific"): | ||||
|         assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode) | ||||
|         model_str = args.mode.split("-")[1] | ||||
|         train_single_model( | ||||
|             args.save_dir, | ||||
|             args.workers, | ||||
|             args.datasets, | ||||
|             args.xpaths, | ||||
|             args.splits, | ||||
|             args.use_less > 0, | ||||
|             tuple(args.seeds), | ||||
|             model_str, | ||||
|             {"channel": args.channel, "num_cells": args.num_cells}, | ||||
|         ) | ||||
|     else: | ||||
|         meta_path = Path(args.save_dir) / "meta-node-{:}.pth".format(args.max_node) | ||||
|         assert meta_path.exists(), "{:} does not exist.".format(meta_path) | ||||
|         meta_info = torch.load(meta_path) | ||||
|         # check whether args is ok | ||||
|         assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], "invalid length of srange args: {:}".format( | ||||
|             args.srange | ||||
|         ) | ||||
|         assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format(args.seeds) | ||||
|         assert len(args.datasets) == len(args.xpaths) == len(args.splits), "invalid infos : {:} vs {:} vs {:}".format( | ||||
|             len(args.datasets), len(args.xpaths), len(args.splits) | ||||
|         ) | ||||
|         assert args.workers > 0, "invalid number of workers : {:}".format(args.workers) | ||||
|  | ||||
|         main( | ||||
|             args.save_dir, | ||||
|             args.workers, | ||||
|             args.datasets, | ||||
|             args.xpaths, | ||||
|             args.splits, | ||||
|             args.use_less > 0, | ||||
|             tuple(args.srange), | ||||
|             args.arch_index, | ||||
|             tuple(args.seeds), | ||||
|             args.mode == "cover", | ||||
|             meta_info, | ||||
|             {"channel": args.channel, "num_cells": args.num_cells}, | ||||
|         ) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user