Reformulate via black
This commit is contained in:
		| @@ -6,284 +6,504 @@ from copy import deepcopy | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| from datasets import get_datasets | ||||
|  | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate | ||||
| from models import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api import ArchResults, ResultsCount | ||||
| from procedures import bench_pure_evaluate as pure_evaluate | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): | ||||
|   xresult     = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \ | ||||
|                                results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|     xresult = ResultsCount( | ||||
|         dataset, | ||||
|         results["net_state_dict"], | ||||
|         results["train_acc1es"], | ||||
|         results["train_losses"], | ||||
|         results["param"], | ||||
|         results["flop"], | ||||
|         arch_config, | ||||
|         used_seed, | ||||
|         results["total_epoch"], | ||||
|         None, | ||||
|     ) | ||||
|  | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None) | ||||
|   network = get_cell_based_tiny_net(net_config) | ||||
|   network.load_state_dict(xresult.get_net_param()) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     net_config = dict2config( | ||||
|         { | ||||
|             "name": "infer.tiny", | ||||
|             "C": arch_config["channel"], | ||||
|             "N": arch_config["num_cells"], | ||||
|             "genotype": CellStructure.str2structure(arch_config["arch_str"]), | ||||
|             "num_classes": arch_config["class_num"], | ||||
|         }, | ||||
|         None, | ||||
|     ) | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if "train_times" in results:  # new version | ||||
|         xresult.update_train_info( | ||||
|             results["train_acc1es"], results["train_acc5es"], results["train_losses"], results["train_times"] | ||||
|         ) | ||||
|         xresult.update_eval(results["valid_acc1es"], results["valid_losses"], results["valid_times"]) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|    | ||||
|         if dataset == "cifar10-valid": | ||||
|             xresult.update_OLD_eval("x-valid", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("ori-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar10": | ||||
|             xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar100" or dataset == "ImageNet16-120": | ||||
|             xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("x-valid", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("x-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             xresult.update_latency(latencies) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset name : {:}".format(dataset)) | ||||
|     return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|     information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     for dataset in datasets: | ||||
|       assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path) | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|   return information | ||||
|     for checkpoint_path in checkpoints: | ||||
|         checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||||
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | ||||
|         for dataset in datasets: | ||||
|             assert dataset in checkpoint, "Can not find {:} in arch-{:} from {:}".format( | ||||
|                 dataset, arch_index, checkpoint_path | ||||
|             ) | ||||
|             results = checkpoint[dataset] | ||||
|             assert results["finish-train"], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | ||||
|                 arch_index, used_seed, dataset, checkpoint_path | ||||
|             ) | ||||
|             arch_config = { | ||||
|                 "channel": results["channel"], | ||||
|                 "num_cells": results["num_cells"], | ||||
|                 "arch_str": arch_str, | ||||
|                 "class_num": results["config"]["class_num"], | ||||
|             } | ||||
|  | ||||
|             xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|             information.update(dataset, int(used_seed), xresult) | ||||
|     return information | ||||
|  | ||||
|  | ||||
| def GET_DataLoaders(workers): | ||||
|  | ||||
|   torch.set_num_threads(workers) | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|   root_dir  = (Path(__file__).parent / '..' / '..').resolve() | ||||
|   torch_dir = Path(os.environ['TORCH_HOME']) | ||||
|   # cifar | ||||
|   cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config' | ||||
|   cifar_config = load_config(cifar_config_path, None, None) | ||||
|   print ('{:} Create data-loader for all datasets'.format(time_string())) | ||||
|   print ('-'*200) | ||||
|   TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num)) | ||||
|   cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None) | ||||
|   assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14] | ||||
|   temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|   temp_dataset.transform = VALID_CIFAR10.transform | ||||
|   # data loader | ||||
|   trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|   train_cifar10_loader    = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True) | ||||
|   valid_cifar10_loader    = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar10_loader    = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-10  : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('-'*200) | ||||
|   # CIFAR-100 | ||||
|   TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num)) | ||||
|   cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None) | ||||
|   assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24] | ||||
|   train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-100  : train-loader has {:3d} batch'.format(len(train_cifar100_loader))) | ||||
|   print ('CIFAR-100  : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader))) | ||||
|   print ('CIFAR-100  : test--loader has {:3d} batch'.format(len(test__cifar100_loader))) | ||||
|   print ('-'*200) | ||||
|     root_dir = (Path(__file__).parent / ".." / "..").resolve() | ||||
|     torch_dir = Path(os.environ["TORCH_HOME"]) | ||||
|     # cifar | ||||
|     cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config" | ||||
|     cifar_config = load_config(cifar_config_path, None, None) | ||||
|     print("{:} Create data-loader for all datasets".format(time_string())) | ||||
|     print("-" * 200) | ||||
|     TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets("cifar10", str(torch_dir / "cifar.python"), -1) | ||||
|     print( | ||||
|         "original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     cifar10_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None) | ||||
|     assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [ | ||||
|         1, | ||||
|         2, | ||||
|         3, | ||||
|         4, | ||||
|         6, | ||||
|         8, | ||||
|         9, | ||||
|         10, | ||||
|         12, | ||||
|         14, | ||||
|     ] | ||||
|     temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|     temp_dataset.transform = VALID_CIFAR10.transform | ||||
|     # data loader | ||||
|     trainval_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|     ) | ||||
|     train_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR10, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         temp_dataset, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__cifar10_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : trval-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(trainval_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : train-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(train_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : valid-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(valid_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : test--loader has {:3d} batch with {:} per batch".format( | ||||
|             len(test__cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print("-" * 200) | ||||
|     # CIFAR-100 | ||||
|     TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets("cifar100", str(torch_dir / "cifar.python"), -1) | ||||
|     print( | ||||
|         "original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     cifar100_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None) | ||||
|     assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [ | ||||
|         0, | ||||
|         2, | ||||
|         6, | ||||
|         7, | ||||
|         9, | ||||
|         11, | ||||
|         12, | ||||
|         17, | ||||
|         20, | ||||
|         24, | ||||
|     ] | ||||
|     train_cifar100_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|     ) | ||||
|     valid_cifar100_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__cifar100_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print("CIFAR-100  : train-loader has {:3d} batch".format(len(train_cifar100_loader))) | ||||
|     print("CIFAR-100  : valid-loader has {:3d} batch".format(len(valid_cifar100_loader))) | ||||
|     print("CIFAR-100  : test--loader has {:3d} batch".format(len(test__cifar100_loader))) | ||||
|     print("-" * 200) | ||||
|  | ||||
|   imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|   imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|   TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1) | ||||
|   print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num)) | ||||
|   imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None) | ||||
|   assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20] | ||||
|   train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size)) | ||||
|     imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|     imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|     TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets( | ||||
|         "ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1 | ||||
|     ) | ||||
|     print( | ||||
|         "original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     imagenet_splits = load_config(root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt", None, None) | ||||
|     assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [ | ||||
|         0, | ||||
|         4, | ||||
|         5, | ||||
|         10, | ||||
|         11, | ||||
|         13, | ||||
|         14, | ||||
|         15, | ||||
|         17, | ||||
|         20, | ||||
|     ] | ||||
|     train_imagenet_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_imagenet_loader = torch.utils.data.DataLoader( | ||||
|         VALID_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__imagenet_loader = torch.utils.data.DataLoader( | ||||
|         VALID_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(train_imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(valid_imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch".format( | ||||
|             len(test__imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|   # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|   loaders = {'cifar10@trainval': trainval_cifar10_loader, | ||||
|              'cifar10@train'   : train_cifar10_loader, | ||||
|              'cifar10@valid'   : valid_cifar10_loader, | ||||
|              'cifar10@test'    : test__cifar10_loader, | ||||
|              'cifar100@train'  : train_cifar100_loader, | ||||
|              'cifar100@valid'  : valid_cifar100_loader, | ||||
|              'cifar100@test'   : test__cifar100_loader, | ||||
|              'ImageNet16-120@train': train_imagenet_loader, | ||||
|              'ImageNet16-120@valid': valid_imagenet_loader, | ||||
|              'ImageNet16-120@test' : test__imagenet_loader} | ||||
|   return loaders | ||||
|     # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|     loaders = { | ||||
|         "cifar10@trainval": trainval_cifar10_loader, | ||||
|         "cifar10@train": train_cifar10_loader, | ||||
|         "cifar10@valid": valid_cifar10_loader, | ||||
|         "cifar10@test": test__cifar10_loader, | ||||
|         "cifar100@train": train_cifar100_loader, | ||||
|         "cifar100@valid": valid_cifar100_loader, | ||||
|         "cifar100@test": test__cifar100_loader, | ||||
|         "ImageNet16-120@train": train_imagenet_loader, | ||||
|         "ImageNet16-120@valid": valid_imagenet_loader, | ||||
|         "ImageNet16-120@test": test__imagenet_loader, | ||||
|     } | ||||
|     return loaders | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] # a list of architecture strings | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"]  # a list of architecture strings | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     meta_max_node = meta_infos["max_node"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs)) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key)) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|  | ||||
|   dataloader_dict = GET_DataLoaders( 6 ) | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 and temp_names[0] == "arch" and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index))))] += 1 | ||||
|     print( | ||||
|         "{:} There are {:5d} architectures that have been evaluated ({:} in total).".format( | ||||
|             time_string(), num_evaluated_arch, meta_num_archs | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print( | ||||
|             "{:} There are {:5d} architectures that are evaluated {:} times.".format(time_string(), num_seeds[key], key) | ||||
|         ) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   to_save_allarc = save_dir / 'simplifies' / 'architectures' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|     dataloader_dict = GET_DataLoaders(6) | ||||
|  | ||||
|   assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir) | ||||
|   arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|   evaluated_indexes    = set() | ||||
|   target_directory     = save_dir / target_dir | ||||
|   target_less_dir      = save_dir / '{:}-LESS'.format(target_dir) | ||||
|   arch_indexes         = subdir2archs[ target_directory ] | ||||
|   num_seeds            = defaultdict(lambda: 0) | ||||
|   end_time             = time.time() | ||||
|   arch_time            = AverageMeter() | ||||
|   for idx, arch_index in enumerate(arch_indexes): | ||||
|     checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     ckps_less   = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     # create the arch info for each architecture | ||||
|     try: | ||||
|       arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict) | ||||
|       arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict) | ||||
|       num_seeds[ len(checkpoints) ] += 1 | ||||
|     except: | ||||
|       print('Loading {:} failed, : {:}'.format(arch_index, checkpoints)) | ||||
|       continue | ||||
|     assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index) | ||||
|     assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|     arch_info = {'full': arch_info_full, 'less': arch_info_less} | ||||
|     evaluated_indexes.add( int(arch_index) ) | ||||
|     arch2infos[int(arch_index)] = arch_info | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index)) | ||||
|     arch_info['full'].clear_params() | ||||
|     arch_info['less'].clear_params() | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index)) | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) ) | ||||
|     print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time)) | ||||
|   # measure time | ||||
|   xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ] | ||||
|   print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs)) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'basestr'    : basestr, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}.pth'.format(target_dir) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     to_save_allarc = save_dir / "simplifies" / "architectures" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     if not to_save_allarc.exists(): | ||||
|         to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|     assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format(target_dir) | ||||
|     arch2infos, datasets = {}, ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120") | ||||
|     evaluated_indexes = set() | ||||
|     target_directory = save_dir / target_dir | ||||
|     target_less_dir = save_dir / "{:}-LESS".format(target_dir) | ||||
|     arch_indexes = subdir2archs[target_directory] | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     end_time = time.time() | ||||
|     arch_time = AverageMeter() | ||||
|     for idx, arch_index in enumerate(arch_indexes): | ||||
|         checkpoints = list(target_directory.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         # create the arch info for each architecture | ||||
|         try: | ||||
|             arch_info_full = account_one_arch( | ||||
|                 arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict | ||||
|             ) | ||||
|             arch_info_less = account_one_arch( | ||||
|                 arch_index, meta_archs[int(arch_index)], ckps_less, ["cifar10-valid"], dataloader_dict | ||||
|             ) | ||||
|             num_seeds[len(checkpoints)] += 1 | ||||
|         except: | ||||
|             print("Loading {:} failed, : {:}".format(arch_index, checkpoints)) | ||||
|             continue | ||||
|         assert int(arch_index) not in evaluated_indexes, "conflict arch-index : {:}".format(arch_index) | ||||
|         assert 0 <= int(arch_index) < len(meta_archs), "invalid arch-index {:} (not found in meta_archs)".format( | ||||
|             arch_index | ||||
|         ) | ||||
|         arch_info = {"full": arch_info_full, "less": arch_info_less} | ||||
|         evaluated_indexes.add(int(arch_index)) | ||||
|         arch2infos[int(arch_index)] = arch_info | ||||
|         torch.save( | ||||
|             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | ||||
|             to_save_allarc / "{:}-FULL.pth".format(arch_index), | ||||
|         ) | ||||
|         arch_info["full"].clear_params() | ||||
|         arch_info["less"].clear_params() | ||||
|         torch.save( | ||||
|             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | ||||
|             to_save_allarc / "{:}-SIMPLE.pth".format(arch_index), | ||||
|         ) | ||||
|         # measure elapsed time | ||||
|         arch_time.update(time.time() - end_time) | ||||
|         end_time = time.time() | ||||
|         need_time = "{:}".format(convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True)) | ||||
|         print( | ||||
|             "{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format( | ||||
|                 time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time | ||||
|             ) | ||||
|         ) | ||||
|     # measure time | ||||
|     xstrs = ["{:}:{:03d}".format(key, num_seeds[key]) for key in sorted(list(num_seeds.keys()))] | ||||
|     print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs)) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "basestr": basestr, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}.pth".format(target_dir) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     meta_max_node = meta_infos["max_node"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) ) | ||||
|     print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files))) | ||||
|    | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|     ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name) | ||||
|     if ckp_path.exists(): | ||||
|       sub_ckps = torch.load(ckp_path, map_location='cpu') | ||||
|       assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr | ||||
|       xarch2infos = sub_ckps['arch2infos'] | ||||
|       xevalindexs = sub_ckps['evaluated_indexes'] | ||||
|       for eval_index in xevalindexs: | ||||
|         assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|         #arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|         arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(), | ||||
|                                   'less': xarch2infos[eval_index]['less'].state_dict()} | ||||
|         evaluated_indexes.add( eval_index ) | ||||
|       print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs))) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth"))) | ||||
|         print( | ||||
|             "The {:02d}/{:02d}-th directory : {:} : {:} runs.".format( | ||||
|                 index, len(sub_model_dirs), sub_dir, len(arch_info_files) | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     arch2infos, evaluated_indexes = dict(), set() | ||||
|     for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|         ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name) | ||||
|         if ckp_path.exists(): | ||||
|             sub_ckps = torch.load(ckp_path, map_location="cpu") | ||||
|             assert sub_ckps["total_archs"] == meta_num_archs and sub_ckps["basestr"] == basestr | ||||
|             xarch2infos = sub_ckps["arch2infos"] | ||||
|             xevalindexs = sub_ckps["evaluated_indexes"] | ||||
|             for eval_index in xevalindexs: | ||||
|                 assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|                 # arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|                 arch2infos[eval_index] = { | ||||
|                     "full": xarch2infos[eval_index]["full"].state_dict(), | ||||
|                     "less": xarch2infos[eval_index]["less"].state_dict(), | ||||
|                 } | ||||
|                 evaluated_indexes.add(eval_index) | ||||
|             print( | ||||
|                 "{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format( | ||||
|                     time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs) | ||||
|                 ) | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Can not find {:}".format(ckp_path)) | ||||
|             # print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|     evaluated_indexes = sorted(list(evaluated_indexes)) | ||||
|     print("Finally, there are {:} architectures that have been trained and evaluated.".format(len(evaluated_indexes))) | ||||
|  | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-BENCH-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, choices=["cal", "merge"], help="The running mode for this script.") | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--target_dir", type=str, help="The target directory.") | ||||
|     parser.add_argument("--max_node", type=int, default=4, help="The maximum node in a cell.") | ||||
|     parser.add_argument("--channel", type=int, default=16, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print("start the statistics of our nas-benchmark from {:} using {:}.".format(save_dir, args.target_dir)) | ||||
|     basestr = "C{:}-N{:}".format(args.channel, args.num_cells) | ||||
|  | ||||
|     if args.mode == "cal": | ||||
|         simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|     elif args.mode == "merge": | ||||
|         merge_all(save_dir, meta_path, basestr) | ||||
|     else: | ||||
|       raise ValueError('Can not find {:}'.format(ckp_path)) | ||||
|       #print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|   evaluated_indexes = sorted( list( evaluated_indexes ) ) | ||||
|   print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes))) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'         ,  type=str, choices=['cal', 'merge'],            help='The running mode for this script.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--target_dir'   ,  type=str,                                      help='The target directory.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir)) | ||||
|   basestr   = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|    | ||||
|   if args.mode == 'cal': | ||||
|     simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|   elif args.mode == 'merge': | ||||
|     merge_all(save_dir, meta_path, basestr) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(args.mode)) | ||||
|         raise ValueError("invalid mode : {:}".format(args.mode)) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user