Reformulate via black
This commit is contained in:
		| @@ -10,81 +10,88 @@ import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
|  | ||||
| matplotlib.use("agg") | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def get_valid_test_acc(api, arch, dataset): | ||||
|   is_size_space = api.search_space_name == 'size' | ||||
|   if dataset == 'cifar10': | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       test_acc = xinfo['test-accuracy'] | ||||
|       xinfo = api.get_more_info(arch, dataset='cifar10-valid', hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_acc = xinfo['valid-accuracy'] | ||||
|   else: | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_acc = xinfo['valid-accuracy'] | ||||
|       test_acc = xinfo['test-accuracy'] | ||||
|   return valid_acc, test_acc, 'validation = {:.2f}, test = {:.2f}\n'.format(valid_acc, test_acc) | ||||
|     is_size_space = api.search_space_name == "size" | ||||
|     if dataset == "cifar10": | ||||
|         xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         test_acc = xinfo["test-accuracy"] | ||||
|         xinfo = api.get_more_info(arch, dataset="cifar10-valid", hp=90 if is_size_space else 200, is_random=False) | ||||
|         valid_acc = xinfo["valid-accuracy"] | ||||
|     else: | ||||
|         xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         valid_acc = xinfo["valid-accuracy"] | ||||
|         test_acc = xinfo["test-accuracy"] | ||||
|     return valid_acc, test_acc, "validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc) | ||||
|  | ||||
|  | ||||
| def compute_kendalltau(vectori, vectorj): | ||||
|   # indexes = list(range(len(vectori))) | ||||
|   # rank_1 = sorted(indexes, key=lambda i: vectori[i]) | ||||
|   # rank_2 = sorted(indexes, key=lambda i: vectorj[i]) | ||||
|   # import pdb; pdb.set_trace() | ||||
|   coef, p = scipy.stats.kendalltau(vectori, vectorj) | ||||
|   return coef | ||||
|     # indexes = list(range(len(vectori))) | ||||
|     # rank_1 = sorted(indexes, key=lambda i: vectori[i]) | ||||
|     # rank_2 = sorted(indexes, key=lambda i: vectorj[i]) | ||||
|     # import pdb; pdb.set_trace() | ||||
|     coef, p = scipy.stats.kendalltau(vectori, vectorj) | ||||
|     return coef | ||||
|  | ||||
|  | ||||
| def compute_spearmanr(vectori, vectorj): | ||||
|   coef, p = scipy.stats.spearmanr(vectori, vectorj) | ||||
|   return coef | ||||
|     coef, p = scipy.stats.spearmanr(vectori, vectorj) | ||||
|     return coef | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--search_space', type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   args = parser.parse_args() | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--save_dir", type=str, default="output/vis-nas-bench/nas-algos", help="Folder to save checkpoints and log." | ||||
|     ) | ||||
|     parser.add_argument("--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|     save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api = create(None, 'tss', fast_mode=True, verbose=False) | ||||
|   indexes = list(range(1, 10000, 300)) | ||||
|   scores_1 = [] | ||||
|   scores_2 = [] | ||||
|   for index in indexes: | ||||
|     valid_acc, test_acc, _ = get_valid_test_acc(api, index, 'cifar10') | ||||
|     scores_1.append(valid_acc) | ||||
|     scores_2.append(test_acc) | ||||
|   correlation = compute_kendalltau(scores_1, scores_2) | ||||
|   print('The kendall tau correlation of {:} samples : {:}'.format(len(indexes), correlation)) | ||||
|   correlation = compute_spearmanr(scores_1, scores_2) | ||||
|   print('The spearmanr correlation of {:} samples : {:}'.format(len(indexes), correlation)) | ||||
|   # scores_1 = ['{:.2f}'.format(x) for x in scores_1] | ||||
|   # scores_2 = ['{:.2f}'.format(x) for x in scores_2] | ||||
|   # print(', '.join(scores_1)) | ||||
|   # print(', '.join(scores_2)) | ||||
|     api = create(None, "tss", fast_mode=True, verbose=False) | ||||
|     indexes = list(range(1, 10000, 300)) | ||||
|     scores_1 = [] | ||||
|     scores_2 = [] | ||||
|     for index in indexes: | ||||
|         valid_acc, test_acc, _ = get_valid_test_acc(api, index, "cifar10") | ||||
|         scores_1.append(valid_acc) | ||||
|         scores_2.append(test_acc) | ||||
|     correlation = compute_kendalltau(scores_1, scores_2) | ||||
|     print("The kendall tau correlation of {:} samples : {:}".format(len(indexes), correlation)) | ||||
|     correlation = compute_spearmanr(scores_1, scores_2) | ||||
|     print("The spearmanr correlation of {:} samples : {:}".format(len(indexes), correlation)) | ||||
|     # scores_1 = ['{:.2f}'.format(x) for x in scores_1] | ||||
|     # scores_2 = ['{:.2f}'.format(x) for x in scores_2] | ||||
|     # print(', '.join(scores_1)) | ||||
|     # print(', '.join(scores_2)) | ||||
|  | ||||
|   dpi, width, height = 250, 1000, 1000 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 14, 14 | ||||
|     dpi, width, height = 250, 1000, 1000 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|     LabelSize, LegendFontsize = 14, 14 | ||||
|  | ||||
|   fig, ax = plt.subplots(1, 1, figsize=figsize) | ||||
|   ax.scatter(scores_1, scores_2 , marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||
|     fig, ax = plt.subplots(1, 1, figsize=figsize) | ||||
|     ax.scatter(scores_1, scores_2, marker="^", s=0.5, c="tab:green", alpha=0.8) | ||||
|  | ||||
|   save_path = '/Users/xuanyidong/Desktop/test-temp-rank.png' | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   plt.close('all') | ||||
|     save_path = "/Users/xuanyidong/Desktop/test-temp-rank.png" | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | ||||
|     plt.close("all") | ||||
|   | ||||
		Reference in New Issue
	
	Block a user