Reformulate via black
This commit is contained in:
		| @@ -12,158 +12,174 @@ import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
|  | ||||
| matplotlib.use("agg") | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   alg2name['REA'] = 'R-EA-SS3' | ||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|   alg2name['RANDOM'] = 'RANDOM' | ||||
|   alg2name['BOHB'] = 'BOHB' | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||
|     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||
|   alg2data = OrderedDict() | ||||
|   for alg, path in alg2path.items(): | ||||
|     data = torch.load(path) | ||||
|     for index, info in data.items(): | ||||
|       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||
|       for j, arch in enumerate(info['all_archs']): | ||||
|         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||
|     alg2data[alg] = data | ||||
|   return alg2data | ||||
| def fetch_data(root_dir="./output/search", search_space="tss", dataset=None): | ||||
|     ss_dir = "{:}-{:}".format(root_dir, search_space) | ||||
|     alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|     alg2name["REA"] = "R-EA-SS3" | ||||
|     alg2name["REINFORCE"] = "REINFORCE-0.01" | ||||
|     alg2name["RANDOM"] = "RANDOM" | ||||
|     alg2name["BOHB"] = "BOHB" | ||||
|     for alg, name in alg2name.items(): | ||||
|         alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth") | ||||
|         assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg]) | ||||
|     alg2data = OrderedDict() | ||||
|     for alg, path in alg2path.items(): | ||||
|         data = torch.load(path) | ||||
|         for index, info in data.items(): | ||||
|             info["time_w_arch"] = [(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])] | ||||
|             for j, arch in enumerate(info["all_archs"]): | ||||
|                 assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format( | ||||
|                     alg, search_space, dataset, index, j | ||||
|                 ) | ||||
|         alg2data[alg] = data | ||||
|     return alg2data | ||||
|  | ||||
|  | ||||
| def query_performance(api, data, dataset, ticket): | ||||
|   results, is_size_space = [], api.search_space_name == 'size' | ||||
|   for i, info in data.items(): | ||||
|     time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||
|     time_a, arch_a = time_w_arch[0] | ||||
|     time_b, arch_b = time_w_arch[1] | ||||
|     info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy'] | ||||
|     interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|     results.append(interplate) | ||||
|   # return sum(results) / len(results) | ||||
|   return np.mean(results), np.std(results) | ||||
|     results, is_size_space = [], api.search_space_name == "size" | ||||
|     for i, info in data.items(): | ||||
|         time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket)) | ||||
|         time_a, arch_a = time_w_arch[0] | ||||
|         time_b, arch_b = time_w_arch[1] | ||||
|         info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"] | ||||
|         interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (ticket - time_a) / ( | ||||
|             time_b - time_a | ||||
|         ) * accuracy_b | ||||
|         results.append(interplate) | ||||
|     # return sum(results) / len(results) | ||||
|     return np.mean(results), np.std(results) | ||||
|  | ||||
|  | ||||
| def show_valid_test(api, data, dataset): | ||||
|   valid_accs, test_accs, is_size_space = [], [], api.search_space_name == 'size' | ||||
|   for i, info in data.items(): | ||||
|     time, arch = info['time_w_arch'][-1] | ||||
|     if dataset == 'cifar10': | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       test_accs.append(xinfo['test-accuracy']) | ||||
|       xinfo = api.get_more_info(arch, dataset='cifar10-valid', hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_accs.append(xinfo['valid-accuracy']) | ||||
|     else: | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_accs.append(xinfo['valid-accuracy']) | ||||
|       test_accs.append(xinfo['test-accuracy']) | ||||
|   valid_str = '{:.2f}$\pm${:.2f}'.format(np.mean(valid_accs), np.std(valid_accs)) | ||||
|   test_str = '{:.2f}$\pm${:.2f}'.format(np.mean(test_accs), np.std(test_accs)) | ||||
|   return valid_str, test_str | ||||
|     valid_accs, test_accs, is_size_space = [], [], api.search_space_name == "size" | ||||
|     for i, info in data.items(): | ||||
|         time, arch = info["time_w_arch"][-1] | ||||
|         if dataset == "cifar10": | ||||
|             xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|             test_accs.append(xinfo["test-accuracy"]) | ||||
|             xinfo = api.get_more_info(arch, dataset="cifar10-valid", hp=90 if is_size_space else 200, is_random=False) | ||||
|             valid_accs.append(xinfo["valid-accuracy"]) | ||||
|         else: | ||||
|             xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|             valid_accs.append(xinfo["valid-accuracy"]) | ||||
|             test_accs.append(xinfo["test-accuracy"]) | ||||
|     valid_str = "{:.2f}$\pm${:.2f}".format(np.mean(valid_accs), np.std(valid_accs)) | ||||
|     test_str = "{:.2f}$\pm${:.2f}".format(np.mean(test_accs), np.std(test_accs)) | ||||
|     return valid_str, test_str | ||||
|  | ||||
|  | ||||
| y_min_s = {('cifar10', 'tss'): 90, | ||||
|            ('cifar10', 'sss'): 92, | ||||
|            ('cifar100', 'tss'): 65, | ||||
|            ('cifar100', 'sss'): 65, | ||||
|            ('ImageNet16-120', 'tss'): 36, | ||||
|            ('ImageNet16-120', 'sss'): 40} | ||||
| y_min_s = { | ||||
|     ("cifar10", "tss"): 90, | ||||
|     ("cifar10", "sss"): 92, | ||||
|     ("cifar100", "tss"): 65, | ||||
|     ("cifar100", "sss"): 65, | ||||
|     ("ImageNet16-120", "tss"): 36, | ||||
|     ("ImageNet16-120", "sss"): 40, | ||||
| } | ||||
|  | ||||
| y_max_s = {('cifar10', 'tss'): 94.3, | ||||
|            ('cifar10', 'sss'): 93.3, | ||||
|            ('cifar100', 'tss'): 72.5, | ||||
|            ('cifar100', 'sss'): 70.5, | ||||
|            ('ImageNet16-120', 'tss'): 46, | ||||
|            ('ImageNet16-120', 'sss'): 46} | ||||
| y_max_s = { | ||||
|     ("cifar10", "tss"): 94.3, | ||||
|     ("cifar10", "sss"): 93.3, | ||||
|     ("cifar100", "tss"): 72.5, | ||||
|     ("cifar100", "sss"): 70.5, | ||||
|     ("ImageNet16-120", "tss"): 46, | ||||
|     ("ImageNet16-120", "sss"): 46, | ||||
| } | ||||
|  | ||||
| x_axis_s = {('cifar10', 'tss'): 200, | ||||
|             ('cifar10', 'sss'): 200, | ||||
|             ('cifar100', 'tss'): 400, | ||||
|             ('cifar100', 'sss'): 400, | ||||
|             ('ImageNet16-120', 'tss'): 1200, | ||||
|             ('ImageNet16-120', 'sss'): 600} | ||||
| x_axis_s = { | ||||
|     ("cifar10", "tss"): 200, | ||||
|     ("cifar10", "sss"): 200, | ||||
|     ("cifar100", "tss"): 400, | ||||
|     ("cifar100", "sss"): 400, | ||||
|     ("ImageNet16-120", "tss"): 1200, | ||||
|     ("ImageNet16-120", "sss"): 600, | ||||
| } | ||||
|  | ||||
| name2label = {'cifar10': 'CIFAR-10', | ||||
|               'cifar100': 'CIFAR-100', | ||||
|               'ImageNet16-120': 'ImageNet-16-120'} | ||||
| name2label = {"cifar10": "CIFAR-10", "cifar100": "CIFAR-100", "ImageNet16-120": "ImageNet-16-120"} | ||||
|  | ||||
|  | ||||
| def visualize_curve(api, vis_save_dir, search_space): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     vis_save_dir = vis_save_dir.resolve() | ||||
|     vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   dpi, width, height = 250, 5200, 1400 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 16, 16 | ||||
|     dpi, width, height = 250, 5200, 1400 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|     LabelSize, LegendFontsize = 16, 16 | ||||
|  | ||||
|   def sub_plot_fn(ax, dataset): | ||||
|     xdataset, max_time = dataset.split('-T') | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|     alg2accuracies = OrderedDict() | ||||
|     total_tickets = 150 | ||||
|     time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||
|     colors = ['b', 'g', 'c', 'm', 'y'] | ||||
|     ax.set_xlim(0, x_axis_s[(xdataset, search_space)]) | ||||
|     ax.set_ylim(y_min_s[(xdataset, search_space)], | ||||
|                 y_max_s[(xdataset, search_space)]) | ||||
|     for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|       accuracies = [] | ||||
|       for ticket in time_tickets: | ||||
|         accuracy, accuracy_std = query_performance(api, data, xdataset, ticket) | ||||
|         accuracies.append(accuracy) | ||||
|       valid_str, test_str = show_valid_test(api, data, xdataset) | ||||
|       # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std)) | ||||
|       print('{:} plot alg : {:10s}  | validation = {:} | test = {:}'.format(time_string(), alg, valid_str, test_str)) | ||||
|       alg2accuracies[alg] = accuracies | ||||
|       ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||
|       ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize) | ||||
|       ax.set_ylabel('Test accuracy on {:}'.format(name2label[xdataset]), fontsize=LabelSize) | ||||
|       ax.set_title('Searching results on {:}'.format(name2label[xdataset]), fontsize=LabelSize+4) | ||||
|     ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|     def sub_plot_fn(ax, dataset): | ||||
|         xdataset, max_time = dataset.split("-T") | ||||
|         alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|         alg2accuracies = OrderedDict() | ||||
|         total_tickets = 150 | ||||
|         time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||
|         colors = ["b", "g", "c", "m", "y"] | ||||
|         ax.set_xlim(0, x_axis_s[(xdataset, search_space)]) | ||||
|         ax.set_ylim(y_min_s[(xdataset, search_space)], y_max_s[(xdataset, search_space)]) | ||||
|         for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|             accuracies = [] | ||||
|             for ticket in time_tickets: | ||||
|                 accuracy, accuracy_std = query_performance(api, data, xdataset, ticket) | ||||
|                 accuracies.append(accuracy) | ||||
|             valid_str, test_str = show_valid_test(api, data, xdataset) | ||||
|             # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std)) | ||||
|             print( | ||||
|                 "{:} plot alg : {:10s}  | validation = {:} | test = {:}".format(time_string(), alg, valid_str, test_str) | ||||
|             ) | ||||
|             alg2accuracies[alg] = accuracies | ||||
|             ax.plot([x / 100 for x in time_tickets], accuracies, c=colors[idx], label="{:}".format(alg)) | ||||
|             ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize) | ||||
|             ax.set_ylabel("Test accuracy on {:}".format(name2label[xdataset]), fontsize=LabelSize) | ||||
|             ax.set_title("Searching results on {:}".format(name2label[xdataset]), fontsize=LabelSize + 4) | ||||
|         ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||
|   # datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   if search_space == 'tss': | ||||
|     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T120000'] | ||||
|   elif search_space == 'sss': | ||||
|     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T60000'] | ||||
|   else: | ||||
|     raise ValueError('Unknown search space: {:}'.format(search_space)) | ||||
|   for dataset, ax in zip(datasets, axs): | ||||
|     sub_plot_fn(ax, dataset) | ||||
|     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) | ||||
|   save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|     fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||
|     # datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|     if search_space == "tss": | ||||
|         datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T120000"] | ||||
|     elif search_space == "sss": | ||||
|         datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T60000"] | ||||
|     else: | ||||
|         raise ValueError("Unknown search space: {:}".format(search_space)) | ||||
|     for dataset, ax in zip(datasets, axs): | ||||
|         sub_plot_fn(ax, dataset) | ||||
|         print("sub-plot {:} on {:} done.".format(dataset, search_space)) | ||||
|     save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve() | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | ||||
|     print("{:} save into {:}".format(time_string(), save_path)) | ||||
|     plt.close("all") | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--search_space', type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   args = parser.parse_args() | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--save_dir", type=str, default="output/vis-nas-bench/nas-algos", help="Folder to save checkpoints and log." | ||||
|     ) | ||||
|     parser.add_argument("--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|     save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||
|   visualize_curve(api, save_dir, args.search_space) | ||||
|     api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||
|     visualize_curve(api, save_dir, args.search_space) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user