Reformulate via black
This commit is contained in:
		| @@ -11,176 +11,194 @@ import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
|  | ||||
| matplotlib.use("agg") | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| plt.rcParams.update({ | ||||
|     "text.usetex": True, | ||||
|     "font.family": "sans-serif", | ||||
|     "font.sans-serif": ["Helvetica"]}) | ||||
| plt.rcParams.update({"text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}) | ||||
| ## for Palatino and other serif fonts use: | ||||
| plt.rcParams.update({ | ||||
|     "text.usetex": True, | ||||
|     "font.family": "serif", | ||||
|     "font.serif": ["Palatino"], | ||||
| }) | ||||
| plt.rcParams.update( | ||||
|     { | ||||
|         "text.usetex": True, | ||||
|         "font.family": "serif", | ||||
|         "font.serif": ["Palatino"], | ||||
|     } | ||||
| ) | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2all = OrderedDict() | ||||
|   # alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|   # alg2name['RANDOM'] = 'RANDOM' | ||||
|   # alg2name['BOHB'] = 'BOHB' | ||||
|   if search_space == 'tss': | ||||
|     hp = '$\mathcal{H}^{1}$' | ||||
|     if dataset == 'cifar10': | ||||
|       suffixes = ['-T1200000', '-T1200000-FULL'] | ||||
|   elif search_space == 'sss': | ||||
|     hp = '$\mathcal{H}^{2}$' | ||||
|     if dataset == 'cifar10': | ||||
|       suffixes = ['-T200000', '-T200000-FULL'] | ||||
|   else: | ||||
|     raise ValueError('Unkonwn search space: {:}'.format(search_space)) | ||||
| def fetch_data(root_dir="./output/search", search_space="tss", dataset=None): | ||||
|     ss_dir = "{:}-{:}".format(root_dir, search_space) | ||||
|     alg2all = OrderedDict() | ||||
|     # alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|     # alg2name['RANDOM'] = 'RANDOM' | ||||
|     # alg2name['BOHB'] = 'BOHB' | ||||
|     if search_space == "tss": | ||||
|         hp = "$\mathcal{H}^{1}$" | ||||
|         if dataset == "cifar10": | ||||
|             suffixes = ["-T1200000", "-T1200000-FULL"] | ||||
|     elif search_space == "sss": | ||||
|         hp = "$\mathcal{H}^{2}$" | ||||
|         if dataset == "cifar10": | ||||
|             suffixes = ["-T200000", "-T200000-FULL"] | ||||
|     else: | ||||
|         raise ValueError("Unkonwn search space: {:}".format(search_space)) | ||||
|  | ||||
|   alg2all[r'REA ($\mathcal{H}^{0}$)'] = dict( | ||||
|     path=os.path.join(ss_dir, dataset + suffixes[0], 'R-EA-SS3', 'results.pth'), | ||||
|     color='b', linestyle='-') | ||||
|   alg2all[r'REA ({:})'.format(hp)] = dict( | ||||
|     path=os.path.join(ss_dir, dataset + suffixes[1], 'R-EA-SS3', 'results.pth'), | ||||
|     color='b', linestyle='--') | ||||
|     alg2all[r"REA ($\mathcal{H}^{0}$)"] = dict( | ||||
|         path=os.path.join(ss_dir, dataset + suffixes[0], "R-EA-SS3", "results.pth"), color="b", linestyle="-" | ||||
|     ) | ||||
|     alg2all[r"REA ({:})".format(hp)] = dict( | ||||
|         path=os.path.join(ss_dir, dataset + suffixes[1], "R-EA-SS3", "results.pth"), color="b", linestyle="--" | ||||
|     ) | ||||
|  | ||||
|   for alg, xdata in alg2all.items(): | ||||
|     data = torch.load(xdata['path']) | ||||
|     for index, info in data.items(): | ||||
|       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||
|       for j, arch in enumerate(info['all_archs']): | ||||
|         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||
|     xdata['data'] = data | ||||
|   return alg2all | ||||
|     for alg, xdata in alg2all.items(): | ||||
|         data = torch.load(xdata["path"]) | ||||
|         for index, info in data.items(): | ||||
|             info["time_w_arch"] = [(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])] | ||||
|             for j, arch in enumerate(info["all_archs"]): | ||||
|                 assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format( | ||||
|                     alg, search_space, dataset, index, j | ||||
|                 ) | ||||
|         xdata["data"] = data | ||||
|     return alg2all | ||||
|  | ||||
|  | ||||
| def query_performance(api, data, dataset, ticket): | ||||
|   results, is_size_space = [], api.search_space_name == 'size' | ||||
|   for i, info in data.items(): | ||||
|     time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||
|     time_a, arch_a = time_w_arch[0] | ||||
|     time_b, arch_b = time_w_arch[1] | ||||
|     info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy'] | ||||
|     interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|     results.append(interplate) | ||||
|   # return sum(results) / len(results) | ||||
|   return np.mean(results), np.std(results) | ||||
|     results, is_size_space = [], api.search_space_name == "size" | ||||
|     for i, info in data.items(): | ||||
|         time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket)) | ||||
|         time_a, arch_a = time_w_arch[0] | ||||
|         time_b, arch_b = time_w_arch[1] | ||||
|         info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"] | ||||
|         interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (ticket - time_a) / ( | ||||
|             time_b - time_a | ||||
|         ) * accuracy_b | ||||
|         results.append(interplate) | ||||
|     # return sum(results) / len(results) | ||||
|     return np.mean(results), np.std(results) | ||||
|  | ||||
|  | ||||
| y_min_s = {('cifar10', 'tss'): 91, | ||||
|            ('cifar10', 'sss'): 91, | ||||
|            ('cifar100', 'tss'): 65, | ||||
|            ('cifar100', 'sss'): 65, | ||||
|            ('ImageNet16-120', 'tss'): 36, | ||||
|            ('ImageNet16-120', 'sss'): 40} | ||||
| y_min_s = { | ||||
|     ("cifar10", "tss"): 91, | ||||
|     ("cifar10", "sss"): 91, | ||||
|     ("cifar100", "tss"): 65, | ||||
|     ("cifar100", "sss"): 65, | ||||
|     ("ImageNet16-120", "tss"): 36, | ||||
|     ("ImageNet16-120", "sss"): 40, | ||||
| } | ||||
|  | ||||
| y_max_s = {('cifar10', 'tss'): 94.5, | ||||
|            ('cifar10', 'sss'): 93.5, | ||||
|            ('cifar100', 'tss'): 72.5, | ||||
|            ('cifar100', 'sss'): 70.5, | ||||
|            ('ImageNet16-120', 'tss'): 46, | ||||
|            ('ImageNet16-120', 'sss'): 46} | ||||
| y_max_s = { | ||||
|     ("cifar10", "tss"): 94.5, | ||||
|     ("cifar10", "sss"): 93.5, | ||||
|     ("cifar100", "tss"): 72.5, | ||||
|     ("cifar100", "sss"): 70.5, | ||||
|     ("ImageNet16-120", "tss"): 46, | ||||
|     ("ImageNet16-120", "sss"): 46, | ||||
| } | ||||
|  | ||||
| x_axis_s = {('cifar10', 'tss'): 1200000, | ||||
|             ('cifar10', 'sss'): 200000, | ||||
|             ('cifar100', 'tss'): 400, | ||||
|             ('cifar100', 'sss'): 400, | ||||
|             ('ImageNet16-120', 'tss'): 1200, | ||||
|             ('ImageNet16-120', 'sss'): 600} | ||||
| x_axis_s = { | ||||
|     ("cifar10", "tss"): 1200000, | ||||
|     ("cifar10", "sss"): 200000, | ||||
|     ("cifar100", "tss"): 400, | ||||
|     ("cifar100", "sss"): 400, | ||||
|     ("ImageNet16-120", "tss"): 1200, | ||||
|     ("ImageNet16-120", "sss"): 600, | ||||
| } | ||||
|  | ||||
| name2label = {'cifar10': 'CIFAR-10', | ||||
|               'cifar100': 'CIFAR-100', | ||||
|               'ImageNet16-120': 'ImageNet-16-120'} | ||||
| name2label = {"cifar10": "CIFAR-10", "cifar100": "CIFAR-100", "ImageNet16-120": "ImageNet-16-120"} | ||||
|  | ||||
| spaces2latex = {'tss': r'$\mathcal{S}_{t}$', | ||||
|                 'sss': r'$\mathcal{S}_{s}$',} | ||||
| spaces2latex = { | ||||
|     "tss": r"$\mathcal{S}_{t}$", | ||||
|     "sss": r"$\mathcal{S}_{s}$", | ||||
| } | ||||
|  | ||||
|  | ||||
| # FuncFormatter can be used as a decorator | ||||
| @ticker.FuncFormatter | ||||
| def major_formatter(x, pos): | ||||
|   if x == 0: | ||||
|     return '0' | ||||
|   else: | ||||
|     return "{:.2f}e5".format(x/1e5) | ||||
|     if x == 0: | ||||
|         return "0" | ||||
|     else: | ||||
|         return "{:.2f}e5".format(x / 1e5) | ||||
|  | ||||
|  | ||||
| def visualize_curve(api_dict, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     vis_save_dir = vis_save_dir.resolve() | ||||
|     vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   dpi, width, height = 250, 5000, 2000 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|     dpi, width, height = 250, 5000, 2000 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|     LabelSize, LegendFontsize = 28, 28 | ||||
|  | ||||
|   def sub_plot_fn(ax, search_space, dataset): | ||||
|     max_time = x_axis_s[(dataset, search_space)] | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|     alg2accuracies = OrderedDict() | ||||
|     total_tickets = 200 | ||||
|     time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||
|     ax.set_xlim(0, x_axis_s[(dataset, search_space)]) | ||||
|     ax.set_ylim(y_min_s[(dataset, search_space)], | ||||
|                 y_max_s[(dataset, search_space)]) | ||||
|     for tick in ax.get_xticklabels(): | ||||
|       tick.set_rotation(25) | ||||
|       tick.set_fontsize(LabelSize - 6) | ||||
|     for tick in ax.get_yticklabels(): | ||||
|       tick.set_fontsize(LabelSize - 6) | ||||
|     ax.xaxis.set_major_formatter(major_formatter) | ||||
|     for idx, (alg, xdata) in enumerate(alg2data.items()): | ||||
|       accuracies = [] | ||||
|       for ticket in time_tickets: | ||||
|         # import pdb; pdb.set_trace() | ||||
|         accuracy, accuracy_std = query_performance( | ||||
|           api_dict[search_space], xdata['data'], dataset, ticket) | ||||
|         accuracies.append(accuracy) | ||||
|       # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std)) | ||||
|       print('{:} plot alg : {:10s} on {:}'.format(time_string(), alg, search_space)) | ||||
|       alg2accuracies[alg] = accuracies | ||||
|       ax.plot(time_tickets, accuracies, c=xdata['color'], linestyle=xdata['linestyle'], label='{:}'.format(alg)) | ||||
|       ax.set_xlabel('Estimated wall-clock time', fontsize=LabelSize) | ||||
|       ax.set_ylabel('Test accuracy', fontsize=LabelSize) | ||||
|       ax.set_title(r'Results on {:} over {:}'.format(name2label[dataset], spaces2latex[search_space]), | ||||
|         fontsize=LabelSize) | ||||
|     ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|     def sub_plot_fn(ax, search_space, dataset): | ||||
|         max_time = x_axis_s[(dataset, search_space)] | ||||
|         alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|         alg2accuracies = OrderedDict() | ||||
|         total_tickets = 200 | ||||
|         time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||
|         ax.set_xlim(0, x_axis_s[(dataset, search_space)]) | ||||
|         ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) | ||||
|         for tick in ax.get_xticklabels(): | ||||
|             tick.set_rotation(25) | ||||
|             tick.set_fontsize(LabelSize - 6) | ||||
|         for tick in ax.get_yticklabels(): | ||||
|             tick.set_fontsize(LabelSize - 6) | ||||
|         ax.xaxis.set_major_formatter(major_formatter) | ||||
|         for idx, (alg, xdata) in enumerate(alg2data.items()): | ||||
|             accuracies = [] | ||||
|             for ticket in time_tickets: | ||||
|                 # import pdb; pdb.set_trace() | ||||
|                 accuracy, accuracy_std = query_performance(api_dict[search_space], xdata["data"], dataset, ticket) | ||||
|                 accuracies.append(accuracy) | ||||
|             # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std)) | ||||
|             print("{:} plot alg : {:10s} on {:}".format(time_string(), alg, search_space)) | ||||
|             alg2accuracies[alg] = accuracies | ||||
|             ax.plot(time_tickets, accuracies, c=xdata["color"], linestyle=xdata["linestyle"], label="{:}".format(alg)) | ||||
|             ax.set_xlabel("Estimated wall-clock time", fontsize=LabelSize) | ||||
|             ax.set_ylabel("Test accuracy", fontsize=LabelSize) | ||||
|             ax.set_title( | ||||
|                 r"Results on {:} over {:}".format(name2label[dataset], spaces2latex[search_space]), fontsize=LabelSize | ||||
|             ) | ||||
|         ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 2, figsize=figsize) | ||||
|   sub_plot_fn(axs[0], 'tss', 'cifar10') | ||||
|   sub_plot_fn(axs[1], 'sss', 'cifar10') | ||||
|   save_path = (vis_save_dir / 'full-curve.png').resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|     fig, axs = plt.subplots(1, 2, figsize=figsize) | ||||
|     sub_plot_fn(axs[0], "tss", "cifar10") | ||||
|     sub_plot_fn(axs[1], "sss", "cifar10") | ||||
|     save_path = (vis_save_dir / "full-curve.png").resolve() | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | ||||
|     print("{:} save into {:}".format(time_string(), save_path)) | ||||
|     plt.close("all") | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos-vs-h', help='Folder to save checkpoints and log.') | ||||
|   args = parser.parse_args() | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="output/vis-nas-bench/nas-algos-vs-h", | ||||
|         help="Folder to save checkpoints and log.", | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|     save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api_tss = create(None, 'tss', fast_mode=True, verbose=False) | ||||
|   api_sss = create(None, 'sss', fast_mode=True, verbose=False) | ||||
|   visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir) | ||||
|     api_tss = create(None, "tss", fast_mode=True, verbose=False) | ||||
|     api_sss = create(None, "sss", fast_mode=True, verbose=False) | ||||
|     visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user