Reformulate via black
This commit is contained in:
		| @@ -11,149 +11,157 @@ import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
|  | ||||
| matplotlib.use("agg") | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   alg2name['REA'] = 'R-EA-SS3' | ||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|   alg2name['RANDOM'] = 'RANDOM' | ||||
|   alg2name['BOHB'] = 'BOHB' | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||
|     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||
|   alg2data = OrderedDict() | ||||
|   for alg, path in alg2path.items(): | ||||
|     data = torch.load(path) | ||||
|     for index, info in data.items(): | ||||
|       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||
|       for j, arch in enumerate(info['all_archs']): | ||||
|         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||
|     alg2data[alg] = data | ||||
|   return alg2data | ||||
| def fetch_data(root_dir="./output/search", search_space="tss", dataset=None): | ||||
|     ss_dir = "{:}-{:}".format(root_dir, search_space) | ||||
|     alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|     alg2name["REA"] = "R-EA-SS3" | ||||
|     alg2name["REINFORCE"] = "REINFORCE-0.01" | ||||
|     alg2name["RANDOM"] = "RANDOM" | ||||
|     alg2name["BOHB"] = "BOHB" | ||||
|     for alg, name in alg2name.items(): | ||||
|         alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth") | ||||
|         assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg]) | ||||
|     alg2data = OrderedDict() | ||||
|     for alg, path in alg2path.items(): | ||||
|         data = torch.load(path) | ||||
|         for index, info in data.items(): | ||||
|             info["time_w_arch"] = [(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])] | ||||
|             for j, arch in enumerate(info["all_archs"]): | ||||
|                 assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format( | ||||
|                     alg, search_space, dataset, index, j | ||||
|                 ) | ||||
|         alg2data[alg] = data | ||||
|     return alg2data | ||||
|  | ||||
|  | ||||
| def get_valid_test_acc(api, arch, dataset): | ||||
|   is_size_space = api.search_space_name == 'size' | ||||
|   if dataset == 'cifar10': | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       test_acc = xinfo['test-accuracy'] | ||||
|       xinfo = api.get_more_info(arch, dataset='cifar10-valid', hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_acc = xinfo['valid-accuracy'] | ||||
|   else: | ||||
|       xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|       valid_acc = xinfo['valid-accuracy'] | ||||
|       test_acc = xinfo['test-accuracy'] | ||||
|   return valid_acc, test_acc, 'validation = {:.2f}, test = {:.2f}\n'.format(valid_acc, test_acc) | ||||
|     is_size_space = api.search_space_name == "size" | ||||
|     if dataset == "cifar10": | ||||
|         xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         test_acc = xinfo["test-accuracy"] | ||||
|         xinfo = api.get_more_info(arch, dataset="cifar10-valid", hp=90 if is_size_space else 200, is_random=False) | ||||
|         valid_acc = xinfo["valid-accuracy"] | ||||
|     else: | ||||
|         xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|         valid_acc = xinfo["valid-accuracy"] | ||||
|         test_acc = xinfo["test-accuracy"] | ||||
|     return valid_acc, test_acc, "validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc) | ||||
|  | ||||
|  | ||||
| def show_valid_test(api, arch): | ||||
|   is_size_space = api.search_space_name == 'size' | ||||
|   final_str = '' | ||||
|   for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|     valid_acc, test_acc, perf_str = get_valid_test_acc(api, arch, dataset) | ||||
|     final_str += '{:} : {:}\n'.format(dataset, perf_str) | ||||
|   return final_str | ||||
|     is_size_space = api.search_space_name == "size" | ||||
|     final_str = "" | ||||
|     for dataset in ["cifar10", "cifar100", "ImageNet16-120"]: | ||||
|         valid_acc, test_acc, perf_str = get_valid_test_acc(api, arch, dataset) | ||||
|         final_str += "{:} : {:}\n".format(dataset, perf_str) | ||||
|     return final_str | ||||
|  | ||||
|  | ||||
| def find_best_valid(api, dataset): | ||||
|   all_valid_accs, all_test_accs = [], [] | ||||
|   for index, arch in enumerate(api): | ||||
|     valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset) | ||||
|     all_valid_accs.append((index, valid_acc)) | ||||
|     all_test_accs.append((index, test_acc)) | ||||
|   best_valid_index = sorted(all_valid_accs, key=lambda x: -x[1])[0][0] | ||||
|   best_test_index = sorted(all_test_accs, key=lambda x: -x[1])[0][0] | ||||
|     all_valid_accs, all_test_accs = [], [] | ||||
|     for index, arch in enumerate(api): | ||||
|         valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset) | ||||
|         all_valid_accs.append((index, valid_acc)) | ||||
|         all_test_accs.append((index, test_acc)) | ||||
|     best_valid_index = sorted(all_valid_accs, key=lambda x: -x[1])[0][0] | ||||
|     best_test_index = sorted(all_test_accs, key=lambda x: -x[1])[0][0] | ||||
|  | ||||
|   print('-' * 50 + '{:10s}'.format(dataset) + '-' * 50) | ||||
|   print('Best ({:}) architecture on validation: {:}'.format(best_valid_index, api[best_valid_index])) | ||||
|   print('Best ({:}) architecture on       test: {:}'.format(best_test_index, api[best_test_index])) | ||||
|   _, _, perf_str = get_valid_test_acc(api, best_valid_index, dataset) | ||||
|   print('using validation ::: {:}'.format(perf_str)) | ||||
|   _, _, perf_str = get_valid_test_acc(api, best_test_index, dataset) | ||||
|   print('using test       ::: {:}'.format(perf_str)) | ||||
|     print("-" * 50 + "{:10s}".format(dataset) + "-" * 50) | ||||
|     print("Best ({:}) architecture on validation: {:}".format(best_valid_index, api[best_valid_index])) | ||||
|     print("Best ({:}) architecture on       test: {:}".format(best_test_index, api[best_test_index])) | ||||
|     _, _, perf_str = get_valid_test_acc(api, best_valid_index, dataset) | ||||
|     print("using validation ::: {:}".format(perf_str)) | ||||
|     _, _, perf_str = get_valid_test_acc(api, best_test_index, dataset) | ||||
|     print("using test       ::: {:}".format(perf_str)) | ||||
|  | ||||
|  | ||||
| def interplate_fn(xpair1, xpair2, x): | ||||
|   (x1, y1) = xpair1 | ||||
|   (x2, y2) = xpair2 | ||||
|   return (x2 - x) / (x2 - x1) * y1 + \ | ||||
|          (x - x1) / (x2 - x1) * y2 | ||||
|     (x1, y1) = xpair1 | ||||
|     (x2, y2) = xpair2 | ||||
|     return (x2 - x) / (x2 - x1) * y1 + (x - x1) / (x2 - x1) * y2 | ||||
|  | ||||
|  | ||||
| def query_performance(api, info, dataset, ticket): | ||||
|   info = deepcopy(info) | ||||
|   results, is_size_space = [], api.search_space_name == 'size' | ||||
|   time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||
|   time_a, arch_a = time_w_arch[0] | ||||
|   time_b, arch_b = time_w_arch[1] | ||||
|     info = deepcopy(info) | ||||
|     results, is_size_space = [], api.search_space_name == "size" | ||||
|     time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket)) | ||||
|     time_a, arch_a = time_w_arch[0] | ||||
|     time_b, arch_b = time_w_arch[1] | ||||
|  | ||||
|   v_acc_a, t_acc_a, _ = get_valid_test_acc(api, arch_a, dataset) | ||||
|   v_acc_b, t_acc_b, _ = get_valid_test_acc(api, arch_b, dataset) | ||||
|   v_acc = interplate_fn((time_a, v_acc_a), (time_b, v_acc_b), ticket) | ||||
|   t_acc = interplate_fn((time_a, t_acc_a), (time_b, t_acc_b), ticket) | ||||
|   # if True: | ||||
|   #   interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|   #   results.append(interplate) | ||||
|   # return sum(results) / len(results) | ||||
|   return v_acc, t_acc | ||||
|     v_acc_a, t_acc_a, _ = get_valid_test_acc(api, arch_a, dataset) | ||||
|     v_acc_b, t_acc_b, _ = get_valid_test_acc(api, arch_b, dataset) | ||||
|     v_acc = interplate_fn((time_a, v_acc_a), (time_b, v_acc_b), ticket) | ||||
|     t_acc = interplate_fn((time_a, t_acc_a), (time_b, t_acc_b), ticket) | ||||
|     # if True: | ||||
|     #   interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|     #   results.append(interplate) | ||||
|     # return sum(results) / len(results) | ||||
|     return v_acc, t_acc | ||||
|  | ||||
|  | ||||
| def show_multi_trial(search_space): | ||||
|   api = create(None, search_space, fast_mode=True, verbose=False) | ||||
|   def show(dataset): | ||||
|     print('show {:} on {:} done.'.format(dataset, search_space)) | ||||
|     xdataset, max_time = dataset.split('-T') | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|     for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|     api = create(None, search_space, fast_mode=True, verbose=False) | ||||
|  | ||||
|       valid_accs, test_accs = [], [] | ||||
|       for _, x in data.items(): | ||||
|         v_acc, t_acc = query_performance(api, x, xdataset, float(max_time)) | ||||
|         valid_accs.append(v_acc) | ||||
|         test_accs.append(t_acc) | ||||
|       valid_str = '{:.2f}$\pm${:.2f}'.format(np.mean(valid_accs), np.std(valid_accs)) | ||||
|       test_str = '{:.2f}$\pm${:.2f}'.format(np.mean(test_accs), np.std(test_accs)) | ||||
|       print('{:} plot alg : {:10s}  | validation = {:} | test = {:}'.format(time_string(), alg, valid_str, test_str)) | ||||
|   if search_space == 'tss': | ||||
|     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T120000'] | ||||
|   elif search_space == 'sss': | ||||
|     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T60000'] | ||||
|   else: | ||||
|     raise ValueError('Unknown search space: {:}'.format(search_space)) | ||||
|   for dataset in datasets: | ||||
|     show(dataset) | ||||
|   print('{:} complete show multi-trial results.\n'.format(time_string())) | ||||
|     def show(dataset): | ||||
|         print("show {:} on {:} done.".format(dataset, search_space)) | ||||
|         xdataset, max_time = dataset.split("-T") | ||||
|         alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|         for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|  | ||||
|             valid_accs, test_accs = [], [] | ||||
|             for _, x in data.items(): | ||||
|                 v_acc, t_acc = query_performance(api, x, xdataset, float(max_time)) | ||||
|                 valid_accs.append(v_acc) | ||||
|                 test_accs.append(t_acc) | ||||
|             valid_str = "{:.2f}$\pm${:.2f}".format(np.mean(valid_accs), np.std(valid_accs)) | ||||
|             test_str = "{:.2f}$\pm${:.2f}".format(np.mean(test_accs), np.std(test_accs)) | ||||
|             print( | ||||
|                 "{:} plot alg : {:10s}  | validation = {:} | test = {:}".format(time_string(), alg, valid_str, test_str) | ||||
|             ) | ||||
|  | ||||
|     if search_space == "tss": | ||||
|         datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T120000"] | ||||
|     elif search_space == "sss": | ||||
|         datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T60000"] | ||||
|     else: | ||||
|         raise ValueError("Unknown search space: {:}".format(search_space)) | ||||
|     for dataset in datasets: | ||||
|         show(dataset) | ||||
|     print("{:} complete show multi-trial results.\n".format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|    | ||||
|   show_multi_trial('tss') | ||||
|   show_multi_trial('sss') | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|   api_tss = create(None, 'tss', fast_mode=False, verbose=False) | ||||
|   resnet = '|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|' | ||||
|   resnet_index = api_tss.query_index_by_arch(resnet) | ||||
|   print(show_valid_test(api_tss, resnet_index)) | ||||
|     show_multi_trial("tss") | ||||
|     show_multi_trial("sss") | ||||
|  | ||||
|   for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|     find_best_valid(api_tss, dataset) | ||||
|     api_tss = create(None, "tss", fast_mode=False, verbose=False) | ||||
|     resnet = "|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|" | ||||
|     resnet_index = api_tss.query_index_by_arch(resnet) | ||||
|     print(show_valid_test(api_tss, resnet_index)) | ||||
|  | ||||
|   largest = '64:64:64:64:64' | ||||
|   largest_index = api_sss.query_index_by_arch(largest) | ||||
|   print(show_valid_test(api_sss, largest_index)) | ||||
|   for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|     find_best_valid(api_sss, dataset) | ||||
|     for dataset in ["cifar10", "cifar100", "ImageNet16-120"]: | ||||
|         find_best_valid(api_tss, dataset) | ||||
|  | ||||
|     largest = "64:64:64:64:64" | ||||
|     largest_index = api_sss.query_index_by_arch(largest) | ||||
|     print(show_valid_test(api_sss, largest_index)) | ||||
|     for dataset in ["cifar10", "cifar100", "ImageNet16-120"]: | ||||
|         find_best_valid(api_sss, dataset) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user