Reformulate via black
This commit is contained in:
		| @@ -16,263 +16,304 @@ from tqdm import tqdm | ||||
| from pathlib import Path | ||||
| from collections import defaultdict, OrderedDict | ||||
| from typing import Dict, Any, Text, List | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import dict2config | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nats_bench   import pickle_save, pickle_load, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from utils        import get_md5_file | ||||
| from models import CellStructure, get_cell_based_tiny_net | ||||
| from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount | ||||
| from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from utils import get_md5_file | ||||
|  | ||||
|  | ||||
| NATS_SSS_BASE_NAME = 'NATS-sss-v1_0'  # 2020.08.28 | ||||
| NATS_SSS_BASE_NAME = "NATS-sss-v1_0"  # 2020.08.28 | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]) -> ArchResults: | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|     information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     try: | ||||
|       checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     except: | ||||
|       raise ValueError('This checkpoint failed to be loaded : {:}'.format(checkpoint_path)) | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     ok_dataset = 0 | ||||
|     for dataset in datasets: | ||||
|       if dataset not in checkpoint: | ||||
|         print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)) | ||||
|         continue | ||||
|       else: | ||||
|         ok_dataset += 1 | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'name': 'infer.shape.tiny', 'channels': arch_str, 'arch_str': arch_str, | ||||
|                      'genotype': results['arch_config']['genotype'], | ||||
|                      'class_num': results['arch_config']['num_classes']} | ||||
|       xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], | ||||
|                              results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|       xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|       xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|     if ok_dataset < len(datasets): raise ValueError('{:} does find enought data : {:} vs {:}'.format(checkpoint_path, ok_dataset, len(datasets))) | ||||
|   return information | ||||
|     for checkpoint_path in checkpoints: | ||||
|         try: | ||||
|             checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||||
|         except: | ||||
|             raise ValueError("This checkpoint failed to be loaded : {:}".format(checkpoint_path)) | ||||
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | ||||
|         ok_dataset = 0 | ||||
|         for dataset in datasets: | ||||
|             if dataset not in checkpoint: | ||||
|                 print("Can not find {:} in arch-{:} from {:}".format(dataset, arch_index, checkpoint_path)) | ||||
|                 continue | ||||
|             else: | ||||
|                 ok_dataset += 1 | ||||
|             results = checkpoint[dataset] | ||||
|             assert results["finish-train"], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | ||||
|                 arch_index, used_seed, dataset, checkpoint_path | ||||
|             ) | ||||
|             arch_config = { | ||||
|                 "name": "infer.shape.tiny", | ||||
|                 "channels": arch_str, | ||||
|                 "arch_str": arch_str, | ||||
|                 "genotype": results["arch_config"]["genotype"], | ||||
|                 "class_num": results["arch_config"]["num_classes"], | ||||
|             } | ||||
|             xresult = ResultsCount( | ||||
|                 dataset, | ||||
|                 results["net_state_dict"], | ||||
|                 results["train_acc1es"], | ||||
|                 results["train_losses"], | ||||
|                 results["param"], | ||||
|                 results["flop"], | ||||
|                 arch_config, | ||||
|                 used_seed, | ||||
|                 results["total_epoch"], | ||||
|                 None, | ||||
|             ) | ||||
|             xresult.update_train_info( | ||||
|                 results["train_acc1es"], results["train_acc5es"], results["train_losses"], results["train_times"] | ||||
|             ) | ||||
|             xresult.update_eval(results["valid_acc1es"], results["valid_losses"], results["valid_times"]) | ||||
|             information.update(dataset, int(used_seed), xresult) | ||||
|         if ok_dataset < len(datasets): | ||||
|             raise ValueError( | ||||
|                 "{:} does find enought data : {:} vs {:}".format(checkpoint_path, ok_dataset, len(datasets)) | ||||
|             ) | ||||
|     return information | ||||
|  | ||||
|  | ||||
| def correct_time_related_info(hp2info: Dict[Text, ArchResults]): | ||||
|   # calibrate the latency based on the number of epochs = 01, since they are trained on the same machine. | ||||
|   x1 = hp2info['01'].get_metrics('cifar10-valid', 'x-valid')['all_time'] / 98 | ||||
|   x2 = hp2info['01'].get_metrics('cifar10-valid', 'ori-test')['all_time'] / 40 | ||||
|   cifar010_latency = (x1 + x2) / 2 | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|     arch_info.reset_latency('cifar10', None, cifar010_latency) | ||||
|   # hp2info['01'].get_latency('cifar10') | ||||
|     # calibrate the latency based on the number of epochs = 01, since they are trained on the same machine. | ||||
|     x1 = hp2info["01"].get_metrics("cifar10-valid", "x-valid")["all_time"] / 98 | ||||
|     x2 = hp2info["01"].get_metrics("cifar10-valid", "ori-test")["all_time"] / 40 | ||||
|     cifar010_latency = (x1 + x2) / 2 | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_latency("cifar10-valid", None, cifar010_latency) | ||||
|         arch_info.reset_latency("cifar10", None, cifar010_latency) | ||||
|     # hp2info['01'].get_latency('cifar10') | ||||
|  | ||||
|   x1 = hp2info['01'].get_metrics('cifar100', 'ori-test')['all_time'] / 40 | ||||
|   x2 = hp2info['01'].get_metrics('cifar100', 'x-test')['all_time'] / 20 | ||||
|   x3 = hp2info['01'].get_metrics('cifar100', 'x-valid')['all_time'] / 20 | ||||
|   cifar100_latency = (x1 + x2 + x3) / 3 | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_latency('cifar100', None, cifar100_latency) | ||||
|     x1 = hp2info["01"].get_metrics("cifar100", "ori-test")["all_time"] / 40 | ||||
|     x2 = hp2info["01"].get_metrics("cifar100", "x-test")["all_time"] / 20 | ||||
|     x3 = hp2info["01"].get_metrics("cifar100", "x-valid")["all_time"] / 20 | ||||
|     cifar100_latency = (x1 + x2 + x3) / 3 | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_latency("cifar100", None, cifar100_latency) | ||||
|  | ||||
|   x1 = hp2info['01'].get_metrics('ImageNet16-120', 'ori-test')['all_time'] / 24 | ||||
|   x2 = hp2info['01'].get_metrics('ImageNet16-120', 'x-test')['all_time'] / 12 | ||||
|   x3 = hp2info['01'].get_metrics('ImageNet16-120', 'x-valid')['all_time'] / 12 | ||||
|   image_latency = (x1 + x2 + x3) / 3 | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_latency('ImageNet16-120', None, image_latency) | ||||
|     x1 = hp2info["01"].get_metrics("ImageNet16-120", "ori-test")["all_time"] / 24 | ||||
|     x2 = hp2info["01"].get_metrics("ImageNet16-120", "x-test")["all_time"] / 12 | ||||
|     x3 = hp2info["01"].get_metrics("ImageNet16-120", "x-valid")["all_time"] / 12 | ||||
|     image_latency = (x1 + x2 + x3) / 3 | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_latency("ImageNet16-120", None, image_latency) | ||||
|  | ||||
|   # CIFAR10 VALID | ||||
|   train_per_epoch_time = list(hp2info['01'].query('cifar10-valid', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|   for key, value in hp2info['01'].query('cifar10-valid', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar10-valid', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_x_valid_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_ori_test_time) | ||||
|     # CIFAR10 VALID | ||||
|     train_per_epoch_time = list(hp2info["01"].query("cifar10-valid", 777).train_times.values()) | ||||
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|     eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|     for key, value in hp2info["01"].query("cifar10-valid", 777).eval_times.items(): | ||||
|         if key.startswith("ori-test@"): | ||||
|             eval_ori_test_time.append(value) | ||||
|         elif key.startswith("x-valid@"): | ||||
|             eval_x_valid_time.append(value) | ||||
|         else: | ||||
|             raise ValueError("-- {:} --".format(key)) | ||||
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_pseudo_train_times("cifar10-valid", None, train_per_epoch_time) | ||||
|         arch_info.reset_pseudo_eval_times("cifar10-valid", None, "x-valid", eval_x_valid_time) | ||||
|         arch_info.reset_pseudo_eval_times("cifar10-valid", None, "ori-test", eval_ori_test_time) | ||||
|  | ||||
|   # CIFAR10 | ||||
|   train_per_epoch_time = list(hp2info['01'].query('cifar10', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time = [] | ||||
|   for key, value in hp2info['01'].query('cifar10', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar10', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_ori_test_time) | ||||
|     # CIFAR10 | ||||
|     train_per_epoch_time = list(hp2info["01"].query("cifar10", 777).train_times.values()) | ||||
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|     eval_ori_test_time = [] | ||||
|     for key, value in hp2info["01"].query("cifar10", 777).eval_times.items(): | ||||
|         if key.startswith("ori-test@"): | ||||
|             eval_ori_test_time.append(value) | ||||
|         else: | ||||
|             raise ValueError("-- {:} --".format(key)) | ||||
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_pseudo_train_times("cifar10", None, train_per_epoch_time) | ||||
|         arch_info.reset_pseudo_eval_times("cifar10", None, "ori-test", eval_ori_test_time) | ||||
|  | ||||
|   # CIFAR100 | ||||
|   train_per_epoch_time = list(hp2info['01'].query('cifar100', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | ||||
|   for key, value in hp2info['01'].query('cifar100', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     elif key.startswith('x-test@'): | ||||
|       eval_x_test_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|   eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar100', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_x_valid_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_x_test_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_ori_test_time) | ||||
|     # CIFAR100 | ||||
|     train_per_epoch_time = list(hp2info["01"].query("cifar100", 777).train_times.values()) | ||||
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|     eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | ||||
|     for key, value in hp2info["01"].query("cifar100", 777).eval_times.items(): | ||||
|         if key.startswith("ori-test@"): | ||||
|             eval_ori_test_time.append(value) | ||||
|         elif key.startswith("x-valid@"): | ||||
|             eval_x_valid_time.append(value) | ||||
|         elif key.startswith("x-test@"): | ||||
|             eval_x_test_time.append(value) | ||||
|         else: | ||||
|             raise ValueError("-- {:} --".format(key)) | ||||
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|     eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_pseudo_train_times("cifar100", None, train_per_epoch_time) | ||||
|         arch_info.reset_pseudo_eval_times("cifar100", None, "x-valid", eval_x_valid_time) | ||||
|         arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_x_test_time) | ||||
|         arch_info.reset_pseudo_eval_times("cifar100", None, "ori-test", eval_ori_test_time) | ||||
|  | ||||
|   # ImageNet16-120 | ||||
|   train_per_epoch_time = list(hp2info['01'].query('ImageNet16-120', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | ||||
|   for key, value in hp2info['01'].query('ImageNet16-120', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     elif key.startswith('x-test@'): | ||||
|       eval_x_test_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|   eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('ImageNet16-120', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_x_valid_time) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_x_test_time) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_ori_test_time) | ||||
|   return hp2info | ||||
|     # ImageNet16-120 | ||||
|     train_per_epoch_time = list(hp2info["01"].query("ImageNet16-120", 777).train_times.values()) | ||||
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|     eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | ||||
|     for key, value in hp2info["01"].query("ImageNet16-120", 777).eval_times.items(): | ||||
|         if key.startswith("ori-test@"): | ||||
|             eval_ori_test_time.append(value) | ||||
|         elif key.startswith("x-valid@"): | ||||
|             eval_x_valid_time.append(value) | ||||
|         elif key.startswith("x-test@"): | ||||
|             eval_x_test_time.append(value) | ||||
|         else: | ||||
|             raise ValueError("-- {:} --".format(key)) | ||||
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|     eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | ||||
|     for hp, arch_info in hp2info.items(): | ||||
|         arch_info.reset_pseudo_train_times("ImageNet16-120", None, train_per_epoch_time) | ||||
|         arch_info.reset_pseudo_eval_times("ImageNet16-120", None, "x-valid", eval_x_valid_time) | ||||
|         arch_info.reset_pseudo_eval_times("ImageNet16-120", None, "x-test", eval_x_test_time) | ||||
|         arch_info.reset_pseudo_eval_times("ImageNet16-120", None, "ori-test", eval_ori_test_time) | ||||
|     return hp2info | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, save_name, nets, total): | ||||
|    | ||||
|   hps, seeds = ['01', '12', '90'], set() | ||||
|   for hp in hps: | ||||
|     sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|     ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth'))) | ||||
|     seed2names = defaultdict(list) | ||||
|     for ckp in ckps: | ||||
|       parts = re.split('-|\.', ckp.name) | ||||
|       seed2names[parts[3]].append(ckp.name) | ||||
|     print('DIR : {:}'.format(sub_save_dir)) | ||||
|     nums = [] | ||||
|     for seed, xlist in seed2names.items(): | ||||
|       seeds.add(seed) | ||||
|       nums.append(len(xlist)) | ||||
|       print('  [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist))) | ||||
|     assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) | ||||
|   print('{:} start simplify the checkpoint.'.format(time_string())) | ||||
|  | ||||
|   datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|  | ||||
|   # Create the directory to save the processed data | ||||
|   # full_save_dir contains all benchmark files with trained weights. | ||||
|   # simplify_save_dir contains all benchmark files without trained weights. | ||||
|   full_save_dir = save_dir / (save_name + '-FULL') | ||||
|   simple_save_dir = save_dir / (save_name + '-SIMPLIFY') | ||||
|   full_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   simple_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   # all data in memory | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   end_time, arch_time = time.time(), AverageMeter() | ||||
|  | ||||
|   for index in tqdm(range(total)): | ||||
|     arch_str = nets[index] | ||||
|     hp2info = OrderedDict() | ||||
|  | ||||
|     full_save_path = full_save_dir / '{:06d}.pickle'.format(index) | ||||
|     simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index) | ||||
|  | ||||
|     hps, seeds = ["01", "12", "90"], set() | ||||
|     for hp in hps: | ||||
|       sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|       ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds] | ||||
|       ckps = [x for x in ckps if x.exists()] | ||||
|       if len(ckps) == 0: | ||||
|         raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) | ||||
|         sub_save_dir = save_dir / "raw-data-{:}".format(hp) | ||||
|         ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth"))) | ||||
|         seed2names = defaultdict(list) | ||||
|         for ckp in ckps: | ||||
|             parts = re.split("-|\.", ckp.name) | ||||
|             seed2names[parts[3]].append(ckp.name) | ||||
|         print("DIR : {:}".format(sub_save_dir)) | ||||
|         nums = [] | ||||
|         for seed, xlist in seed2names.items(): | ||||
|             seeds.add(seed) | ||||
|             nums.append(len(xlist)) | ||||
|             print("  [seed={:}] there are {:} checkpoints.".format(seed, len(xlist))) | ||||
|         assert len(nets) == total == max(nums), "there are some missed files : {:} vs {:}".format(max(nums), total) | ||||
|     print("{:} start simplify the checkpoint.".format(time_string())) | ||||
|  | ||||
|       arch_info = account_one_arch(index, arch_str, ckps, datasets) | ||||
|       hp2info[hp] = arch_info | ||||
|      | ||||
|     hp2info = correct_time_related_info(hp2info) | ||||
|     evaluated_indexes.add(index) | ||||
|     datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120") | ||||
|  | ||||
|     hp2info['01'].clear_params()  # to save some spaces... | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     pickle_save(to_save_data, str(full_save_path)) | ||||
|      | ||||
|     for hp in hps: hp2info[hp].clear_params() | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     pickle_save(to_save_data, str(simple_save_path)) | ||||
|     arch2infos[index] = to_save_data | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True)) | ||||
|     # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) | ||||
|   print('{:} {:} done.'.format(time_string(), save_name)) | ||||
|   final_infos = {'meta_archs' : nets, | ||||
|                  'total_archs': total, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = save_dir / '{:}.pickle'.format(save_name) | ||||
|   pickle_save(final_infos, str(save_file_name)) | ||||
|   # move the benchmark file to a new path | ||||
|   hd5sum = get_md5_file(str(save_file_name) + '.pbz2') | ||||
|   hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_SSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(str(save_file_name) + '.pbz2', hd5_file_name) | ||||
|   print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name)) | ||||
|   # move the directory to a new path | ||||
|   hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_SSS_BASE_NAME, hd5sum) | ||||
|   hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_SSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(full_save_dir, hd5_full_save_dir) | ||||
|   shutil.move(simple_save_dir, hd5_simple_save_dir) | ||||
|   # save the meta information for simple and full | ||||
|   final_infos['arch2infos'] = None | ||||
|   final_infos['evaluated_indexes'] = set() | ||||
|   pickle_save(final_infos, str(hd5_full_save_dir / 'meta.pickle')) | ||||
|   pickle_save(final_infos, str(hd5_simple_save_dir / 'meta.pickle')) | ||||
|     # Create the directory to save the processed data | ||||
|     # full_save_dir contains all benchmark files with trained weights. | ||||
|     # simplify_save_dir contains all benchmark files without trained weights. | ||||
|     full_save_dir = save_dir / (save_name + "-FULL") | ||||
|     simple_save_dir = save_dir / (save_name + "-SIMPLIFY") | ||||
|     full_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     simple_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     # all data in memory | ||||
|     arch2infos, evaluated_indexes = dict(), set() | ||||
|     end_time, arch_time = time.time(), AverageMeter() | ||||
|  | ||||
|     for index in tqdm(range(total)): | ||||
|         arch_str = nets[index] | ||||
|         hp2info = OrderedDict() | ||||
|  | ||||
|         full_save_path = full_save_dir / "{:06d}.pickle".format(index) | ||||
|         simple_save_path = simple_save_dir / "{:06d}.pickle".format(index) | ||||
|  | ||||
|         for hp in hps: | ||||
|             sub_save_dir = save_dir / "raw-data-{:}".format(hp) | ||||
|             ckps = [sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed) for seed in seeds] | ||||
|             ckps = [x for x in ckps if x.exists()] | ||||
|             if len(ckps) == 0: | ||||
|                 raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp)) | ||||
|  | ||||
|             arch_info = account_one_arch(index, arch_str, ckps, datasets) | ||||
|             hp2info[hp] = arch_info | ||||
|  | ||||
|         hp2info = correct_time_related_info(hp2info) | ||||
|         evaluated_indexes.add(index) | ||||
|  | ||||
|         hp2info["01"].clear_params()  # to save some spaces... | ||||
|         to_save_data = OrderedDict( | ||||
|             {"01": hp2info["01"].state_dict(), "12": hp2info["12"].state_dict(), "90": hp2info["90"].state_dict()} | ||||
|         ) | ||||
|         pickle_save(to_save_data, str(full_save_path)) | ||||
|  | ||||
|         for hp in hps: | ||||
|             hp2info[hp].clear_params() | ||||
|         to_save_data = OrderedDict( | ||||
|             {"01": hp2info["01"].state_dict(), "12": hp2info["12"].state_dict(), "90": hp2info["90"].state_dict()} | ||||
|         ) | ||||
|         pickle_save(to_save_data, str(simple_save_path)) | ||||
|         arch2infos[index] = to_save_data | ||||
|         # measure elapsed time | ||||
|         arch_time.update(time.time() - end_time) | ||||
|         end_time = time.time() | ||||
|         need_time = "{:}".format(convert_secs2time(arch_time.avg * (total - index - 1), True)) | ||||
|         # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) | ||||
|     print("{:} {:} done.".format(time_string(), save_name)) | ||||
|     final_infos = { | ||||
|         "meta_archs": nets, | ||||
|         "total_archs": total, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = save_dir / "{:}.pickle".format(save_name) | ||||
|     pickle_save(final_infos, str(save_file_name)) | ||||
|     # move the benchmark file to a new path | ||||
|     hd5sum = get_md5_file(str(save_file_name) + ".pbz2") | ||||
|     hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_SSS_BASE_NAME, hd5sum) | ||||
|     shutil.move(str(save_file_name) + ".pbz2", hd5_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:} -> {:}.".format( | ||||
|             len(evaluated_indexes), total, save_file_name, hd5_file_name | ||||
|         ) | ||||
|     ) | ||||
|     # move the directory to a new path | ||||
|     hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_SSS_BASE_NAME, hd5sum) | ||||
|     hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_SSS_BASE_NAME, hd5sum) | ||||
|     shutil.move(full_save_dir, hd5_full_save_dir) | ||||
|     shutil.move(simple_save_dir, hd5_simple_save_dir) | ||||
|     # save the meta information for simple and full | ||||
|     final_infos["arch2infos"] = None | ||||
|     final_infos["evaluated_indexes"] = set() | ||||
|     pickle_save(final_infos, str(hd5_full_save_dir / "meta.pickle")) | ||||
|     pickle_save(final_infos, str(hd5_simple_save_dir / "meta.pickle")) | ||||
|  | ||||
|  | ||||
| def traverse_net(candidates: List[int], N: int): | ||||
|   nets = [''] | ||||
|   for i in range(N): | ||||
|     new_nets = [] | ||||
|     for net in nets: | ||||
|       for C in candidates: | ||||
|         new_nets.append(str(C) if net == '' else "{:}:{:}".format(net,C)) | ||||
|     nets = new_nets | ||||
|   return nets | ||||
|     nets = [""] | ||||
|     for i in range(N): | ||||
|         new_nets = [] | ||||
|         for net in nets: | ||||
|             for C in candidates: | ||||
|                 new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C)) | ||||
|         nets = new_nets | ||||
|     return nets | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (size search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NATS-Bench-size',    help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--candidateC'   ,  type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') | ||||
|   parser.add_argument('--num_layers'   ,  type=int, default=5,      help='The number of layers in a network.') | ||||
|   parser.add_argument('--check_N'      ,  type=int, default=32768,  help='For safety.') | ||||
|   parser.add_argument('--save_name'    ,  type=str, default='process',                  help='The save directory.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   nets = traverse_net(args.candidateC, args.num_layers) | ||||
|   if len(nets) != args.check_N: | ||||
|     raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NATS-Bench (size search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NATS-Bench-size", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--candidateC", type=int, nargs="+", default=[8, 16, 24, 32, 40, 48, 56, 64], help=".") | ||||
|     parser.add_argument("--num_layers", type=int, default=5, help="The number of layers in a network.") | ||||
|     parser.add_argument("--check_N", type=int, default=32768, help="For safety.") | ||||
|     parser.add_argument("--save_name", type=str, default="process", help="The save directory.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   simplify(save_dir, args.save_name, nets, args.check_N) | ||||
|     nets = traverse_net(args.candidateC, args.num_layers) | ||||
|     if len(nets) != args.check_N: | ||||
|         raise ValueError("Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)) | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     simplify(save_dir, args.save_name, nets, args.check_N) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user