##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # ################################################################################################ # python exps/NAS-Bench-201/show-best.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth # ################################################################################################ import sys, argparse from pathlib import Path lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from nas_201_api import NASBench201API as API if __name__ == '__main__': parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file.') args = parser.parse_args() meta_file = Path(args.api_path) assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) api = API(str(meta_file)) # This will show the results of the best architecture based on the validation set of each dataset. arch_index, accuracy = api.find_best('cifar10-valid', 'x-valid', None, None, False) print('FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::') print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) api.show(arch_index) print('') arch_index, accuracy = api.find_best('cifar100', 'x-valid', None, None, False) print('FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::') print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) api.show(arch_index) print('') arch_index, accuracy = api.find_best('ImageNet16-120', 'x-valid', None, None, False) print('FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::') print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) api.show(arch_index) print('')