##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/GeMOSA/baselines/slbm-ft.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda # python exps/GeMOSA/baselines/slbm-ft.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda # python exps/GeMOSA/baselines/slbm-ft.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda # python exps/GeMOSA/baselines/slbm-ft.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve() print("LIB-DIR: {:}".format(lib_dir)) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, ) from xautodl.log_utils import time_string from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.procedures.metric_utils import ( SaveMetric, MSEMetric, Top1AccMetric, ComposeMetric, ) from xautodl.datasets.synthetic_core import get_synthetic_env from xautodl.models.xcore import get_model from xautodl.utils import show_mean_var def subsample(historical_x, historical_y, maxn=10000): total = historical_x.size(0) if total <= maxn: return historical_x, historical_y else: indexes = torch.randint(low=0, high=total, size=[maxn]) return historical_x[indexes], historical_y[indexes] def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) env = get_synthetic_env(mode="test", version=args.env_version) model_kwargs = dict( config=dict(model_type="norm_mlp"), input_dim=env.meta_info["input_dim"], output_dim=env.meta_info["output_dim"], hidden_dims=[args.hidden_dim] * 2, act_cls="relu", norm_cls="layer_norm_1d", ) logger.log("The total enviornment: {:}".format(env)) w_containers = dict() if env.meta_info["task"] == "regression": criterion = torch.nn.MSELoss() metric_cls = MSEMetric elif env.meta_info["task"] == "classification": criterion = torch.nn.CrossEntropyLoss() metric_cls = Top1AccMetric else: raise ValueError( "This task ({:}) is not supported.".format(all_env.meta_info["task"]) ) def finetune(index): seq_times = env.get_seq_times(index, args.seq_length) _, (allxs, allys) = env.seq_call(seq_times) allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1) if env.meta_info["task"] == "classification": allys = allys.view(-1) historical_x, historical_y = allxs.to(args.device), allys.to(args.device) model = get_model(**model_kwargs) model = model.to(args.device) optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = metric_cls(True) best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) # model.analyze_weights() with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() return train_results, model metric = metric_cls(True) per_timestamp_time, start_time = AverageMeter(), time.time() for idx, (future_time, (future_x, future_y)) in enumerate(env): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) + " " + need_time ) # train the same data train_results, model = finetune(idx) # build optimizer xmetric = ComposeMetric(metric_cls(True), SaveMetric()) future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = model(future_x) future_loss = criterion(future_y_hat, future_y) metric(future_y_hat, future_y) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) + " train-score: {:.5f}, eval-score: {:.5f}".format( train_results["score"], metric.get_info()["score"] ) ) logger.log(log_str) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_containers": w_containers}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() return metric.get_info()["score"] if __name__ == "__main__": parser = argparse.ArgumentParser("Use the data in the past.") parser.add_argument( "--save_dir", type=str, default="./outputs/GeMOSA-synthetic/use-same-ft-timestamp", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, required=True, help="The hidden dimension.", ) parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--seq_length", type=int, default=20, help="The sequence length." ) parser.add_argument( "--batch_size", type=int, default=512, help="The batch size", ) parser.add_argument( "--epochs", type=int, default=300, help="The total number of epochs.", ) parser.add_argument( "--device", type=str, default="cpu", help="", ) parser.add_argument( "--workers", type=int, default=4, help="The number of data loading workers (default: 4)", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format( args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version ) if args.rand_seed is None or args.rand_seed < 0: results = [] for iseed in range(3): args.rand_seed = random.randint(1, 100000) result = main(args) results.append(result) show_mean_var(results) else: main(args)