import os, sys, time from copy import deepcopy import torch import torch.nn as nn import torchvision.transforms as transforms from shutil import copyfile from utils import print_log, obtain_accuracy, AverageMeter from utils import time_string, convert_secs2time from utils import count_parameters_in_MB from utils import print_FLOPs from utils import Cutout from nas import NetworkImageNet as Network from datasets import get_datasets def obtain_best(accuracies): if len(accuracies) == 0: return (0, 0) tops = [value for key, value in accuracies.items()] s2b = sorted( tops ) return s2b[-1] class CrossEntropyLabelSmooth(nn.Module): def __init__(self, num_classes, epsilon): super(CrossEntropyLabelSmooth, self).__init__() self.num_classes = num_classes self.epsilon = epsilon self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): log_probs = self.logsoftmax(inputs) targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1) targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes loss = (-targets * log_probs).mean(0).sum() return loss def main_procedure_imagenet(config, data_path, args, genotype, init_channels, layers, pure_evaluate, log): # training data and testing data train_data, valid_data, class_num = get_datasets('imagenet-1k', data_path, -1) train_queue = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, shuffle= True, pin_memory=True, num_workers=args.workers) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers) print_log('-------------------------------------- main-procedure', log) print_log('config : {:}'.format(config), log) print_log('genotype : {:}'.format(genotype), log) print_log('init_channels : {:}'.format(init_channels), log) print_log('layers : {:}'.format(layers), log) print_log('class_num : {:}'.format(class_num), log) basemodel = Network(init_channels, class_num, layers, config.auxiliary, genotype) model = torch.nn.DataParallel(basemodel).cuda() total_param, aux_param = count_parameters_in_MB(basemodel), count_parameters_in_MB(basemodel.auxiliary_param()) print_log('Network =>\n{:}'.format(basemodel), log) print_FLOPs(basemodel, (1,3,224,224), [print_log, log]) print_log('Parameters : {:} - {:} = {:.3f} MB'.format(total_param, aux_param, total_param - aux_param), log) print_log('config : {:}'.format(config), log) print_log('genotype : {:}'.format(genotype), log) print_log('Train-Dataset : {:}'.format(train_data), log) print_log('Valid--Dataset : {:}'.format(valid_data), log) print_log('Args : {:}'.format(args), log) criterion = torch.nn.CrossEntropyLoss().cuda() criterion_smooth = CrossEntropyLabelSmooth(class_num, config.label_smooth).cuda() optimizer = torch.optim.SGD(model.parameters(), config.LR, momentum=config.momentum, weight_decay=config.decay, nesterov=True) if config.type == 'cosine': scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.epochs)) elif config.type == 'steplr': scheduler = torch.optim.lr_scheduler.StepLR(optimizer, config.decay_period, gamma=config.gamma) else: raise ValueError('Can not find the schedular type : {:}'.format(config.type)) checkpoint_path = os.path.join(args.save_path, 'seed-{:}-checkpoint-imagenet-model.pth'.format(args.manualSeed)) checkpoint_best = os.path.join(args.save_path, 'seed-{:}-checkpoint-imagenet-best.pth'.format(args.manualSeed)) if pure_evaluate: print_log('-'*20 + 'Pure Evaluation' + '-'*20, log) basemodel.load_state_dict( pure_evaluate ) with torch.no_grad(): valid_acc1, valid_acc5, valid_los = _train(valid_queue, model, criterion, None, 'test' , -1, config, args.print_freq, log) return (valid_acc1, valid_acc5) elif os.path.isfile(checkpoint_path): checkpoint = torch.load( checkpoint_path ) start_epoch = checkpoint['epoch'] basemodel.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) accuracies = checkpoint['accuracies'] print_log('Load checkpoint from {:} with start-epoch = {:}'.format(checkpoint_path, start_epoch), log) else: start_epoch, accuracies = 0, {} print_log('Train model from scratch without pre-trained model or snapshot', log) # Main loop start_time, epoch_time = time.time(), AverageMeter() for epoch in range(start_epoch, config.epochs): scheduler.step() need_time = convert_secs2time(epoch_time.val * (config.epochs-epoch), True) print_log("\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} LR={:6.4f} ~ {:6.4f}, Batch={:d}".format(time_string(), epoch, config.epochs, need_time, min(scheduler.get_lr()), max(scheduler.get_lr()), config.batch_size), log) basemodel.update_drop_path(config.drop_path_prob * epoch / config.epochs) train_acc1, train_acc5, train_los = _train(train_queue, model, criterion_smooth, optimizer, 'train', epoch, config, args.print_freq, log) with torch.no_grad(): valid_acc1, valid_acc5, valid_los = _train(valid_queue, model, criterion, None, 'test' , epoch, config, args.print_freq, log) accuracies[epoch] = (valid_acc1, valid_acc5) torch.save({'epoch' : epoch + 1, 'args' : deepcopy(args), 'state_dict': basemodel.state_dict(), 'optimizer' : optimizer.state_dict(), 'scheduler' : scheduler.state_dict(), 'accuracies': accuracies}, checkpoint_path) best_acc = obtain_best( accuracies ) if accuracies[epoch] == best_acc: copyfile(checkpoint_path, checkpoint_best) print_log('----> Best Accuracy : Acc@1={:.2f}, Acc@5={:.2f}, Error@1={:.2f}, Error@5={:.2f}'.format(best_acc[0], best_acc[1], 100-best_acc[0], 100-best_acc[1]), log) print_log('----> Save into {:}'.format(checkpoint_path), log) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() return obtain_best( accuracies ) def _train(xloader, model, criterion, optimizer, mode, epoch, config, print_freq, log): data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() if mode == 'train': model.train() elif mode == 'test': model.eval() else: raise ValueError("The mode is not right : {:}".format(mode)) end = time.time() for i, (inputs, targets) in enumerate(xloader): # measure data loading time data_time.update(time.time() - end) # calculate prediction and loss targets = targets.cuda(non_blocking=True) if mode == 'train': optimizer.zero_grad() if config.auxiliary and model.training: logits, logits_aux = model(inputs) else: logits = model(inputs) loss = criterion(logits, targets) if config.auxiliary and model.training: loss_aux = criterion(logits_aux, targets) loss += config.auxiliary_weight * loss_aux if mode == 'train': loss.backward() if config.grad_clip > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip) optimizer.step() # record prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) losses.update(loss.item(), inputs.size(0)) top1.update (prec1.item(), inputs.size(0)) top5.update (prec5.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % print_freq == 0 or (i+1) == len(xloader): Sstr = ' {:5s}'.format(mode) + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, i, len(xloader)) Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5) print_log(Sstr + ' ' + Tstr + ' ' + Lstr, log) print_log ('{TIME:} **{mode:}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(TIME=time_string(), mode=mode, top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg), log) return top1.avg, top5.avg, losses.avg