#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################

import torch
import torch.nn as nn
from copy import deepcopy

from models.cell_operations import OPS


# Cell for NAS-Bench-201
class InferCell(nn.Module):

  def __init__(self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True):
    super(InferCell, self).__init__()

    self.layers  = nn.ModuleList()
    self.node_IN = []
    self.node_IX = []
    self.genotype = deepcopy(genotype)
    for i in range(1, len(genotype)):
      node_info = genotype[i-1]
      cur_index = []
      cur_innod = []
      for (op_name, op_in) in node_info:
        if op_in == 0:
          layer = OPS[op_name](C_in , C_out, stride, affine, track_running_stats)
        else:
          layer = OPS[op_name](C_out, C_out,      1, affine, track_running_stats)
        cur_index.append( len(self.layers) )
        cur_innod.append( op_in )
        self.layers.append( layer )
      self.node_IX.append( cur_index )
      self.node_IN.append( cur_innod )
    self.nodes   = len(genotype)
    self.in_dim  = C_in
    self.out_dim = C_out

  def extra_repr(self):
    string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
    laystr = []
    for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
      y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
      x = '{:}<-({:})'.format(i+1, ','.join(y))
      laystr.append( x )
    return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())

  def forward(self, inputs):
    nodes = [inputs]
    for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
      node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
      nodes.append( node_feature )
    return nodes[-1]



# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetInferCell(nn.Module):

  def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
    super(NASNetInferCell, self).__init__()
    self.reduction = reduction
    if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
    else             : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
    self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)

    if not reduction:
      nodes, concats = genotype['normal'], genotype['normal_concat']
    else:
      nodes, concats = genotype['reduce'], genotype['reduce_concat']
    self._multiplier = len(concats)
    self._concats = concats
    self._steps = len(nodes)
    self._nodes = nodes
    self.edges = nn.ModuleDict()
    for i, node in enumerate(nodes):
      for in_node in node:
        name, j = in_node[0], in_node[1]
        stride = 2 if reduction and j < 2 else 1
        node_str = '{:}<-{:}'.format(i+2, j)
        self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats)

  # [TODO] to support drop_prob in this function..
  def forward(self, s0, s1, unused_drop_prob):
    s0 = self.preprocess0(s0)
    s1 = self.preprocess1(s1)

    states = [s0, s1]
    for i, node in enumerate(self._nodes):
      clist = []
      for in_node in node:
        name, j = in_node[0], in_node[1]
        node_str = '{:}<-{:}'.format(i+2, j)
        op = self.edges[ node_str ]
        clist.append( op(states[j]) )
      states.append( sum(clist) )
    return torch.cat([states[x] for x in self._concats], dim=1)


class AuxiliaryHeadCIFAR(nn.Module):

  def __init__(self, C, num_classes):
    """assuming input size 8x8"""
    super(AuxiliaryHeadCIFAR, self).__init__()
    self.features = nn.Sequential(
      nn.ReLU(inplace=True),
      nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
      nn.Conv2d(C, 128, 1, bias=False),
      nn.BatchNorm2d(128),
      nn.ReLU(inplace=True),
      nn.Conv2d(128, 768, 2, bias=False),
      nn.BatchNorm2d(768),
      nn.ReLU(inplace=True)
    )
    self.classifier = nn.Linear(768, num_classes)

  def forward(self, x):
    x = self.features(x)
    x = self.classifier(x.view(x.size(0),-1))
    return x