################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # ###################################################################################### # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 777 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --drop_path_rate 0.3 # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 #### # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 777 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2 # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2 #### # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 777 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas #### # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 777 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn #### # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random #### # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas ###################################################################################### import os, sys, time, random, argparse import numpy as np from copy import deepcopy import torch import torch.nn as nn from pathlib import Path lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from config_utils import load_config, dict2config, configure2str from datasets import get_datasets, get_nas_search_loaders from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler from utils import count_parameters_in_MB, obtain_accuracy from log_utils import AverageMeter, time_string, convert_secs2time from models import get_cell_based_tiny_net, get_search_spaces from nas_201_api import NASBench201API as API # The following three functions are used for DARTS-V2 def _concat(xs): return torch.cat([x.view(-1) for x in xs]) def _hessian_vector_product(vector, network, criterion, base_inputs, base_targets, r=1e-2): R = r / _concat(vector).norm() for p, v in zip(network.weights, vector): p.data.add_(R, v) _, logits = network(base_inputs) loss = criterion(logits, base_targets) grads_p = torch.autograd.grad(loss, network.alphas) for p, v in zip(network.weights, vector): p.data.sub_(2*R, v) _, logits = network(base_inputs) loss = criterion(logits, base_targets) grads_n = torch.autograd.grad(loss, network.alphas) for p, v in zip(network.weights, vector): p.data.add_(R, v) return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)] def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets): # _compute_unrolled_model _, logits = network(base_inputs) loss = criterion(logits, base_targets) LR, WD, momentum = w_optimizer.param_groups[0]['lr'], w_optimizer.param_groups[0]['weight_decay'], w_optimizer.param_groups[0]['momentum'] with torch.no_grad(): theta = _concat(network.weights) try: moment = _concat(w_optimizer.state[v]['momentum_buffer'] for v in network.weights) moment = moment.mul_(momentum) except: moment = torch.zeros_like(theta) dtheta = _concat(torch.autograd.grad(loss, network.weights)) + WD*theta params = theta.sub(LR, moment+dtheta) unrolled_model = deepcopy(network) model_dict = unrolled_model.state_dict() new_params, offset = {}, 0 for k, v in network.named_parameters(): if 'arch_parameters' in k: continue v_length = np.prod(v.size()) new_params[k] = params[offset: offset+v_length].view(v.size()) offset += v_length model_dict.update(new_params) unrolled_model.load_state_dict(model_dict) unrolled_model.zero_grad() _, unrolled_logits = unrolled_model(arch_inputs) unrolled_loss = criterion(unrolled_logits, arch_targets) unrolled_loss.backward() dalpha = unrolled_model.arch_parameters.grad vector = [v.grad.data for v in unrolled_model.weights] [implicit_grads] = _hessian_vector_product(vector, network, criterion, base_inputs, base_targets) dalpha.data.sub_(LR, implicit_grads.data) if network.arch_parameters.grad is None: network.arch_parameters.grad = deepcopy( dalpha ) else: network.arch_parameters.grad.data.copy_( dalpha.data ) return unrolled_loss.detach(), unrolled_logits.detach() def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, algo, logger): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() network.train() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): scheduler.update(None, 1.0 * step / len(xloader)) base_inputs = base_inputs.cuda(non_blocking=True) arch_inputs = arch_inputs.cuda(non_blocking=True) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # Update the weights if algo == 'setn': sampled_arch = network.dync_genotype(True) network.set_cal_mode('dynamic', sampled_arch) elif algo == 'gdas': network.set_cal_mode('gdas', None) elif algo.startswith('darts'): network.set_cal_mode('joint', None) elif algo == 'random': network.set_cal_mode('urs', None) elif algo == 'enas': with torch.no_grad(): network.controller.eval() _, _, sampled_arch = network.controller() network.set_cal_mode('dynamic', sampled_arch) else: raise ValueError('Invalid algo name : {:}'.format(algo)) network.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update (base_prec1.item(), base_inputs.size(0)) base_top5.update (base_prec5.item(), base_inputs.size(0)) # update the architecture-weight if algo == 'setn': network.set_cal_mode('joint') elif algo == 'gdas': network.set_cal_mode('gdas', None) elif algo.startswith('darts'): network.set_cal_mode('joint', None) elif algo == 'random': network.set_cal_mode('urs', None) elif algo != 'enas': raise ValueError('Invalid algo name : {:}'.format(algo)) network.zero_grad() if algo == 'darts-v2': arch_loss, logits = backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets) a_optimizer.step() elif algo == 'random' or algo == 'enas': with torch.no_grad(): _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) else: _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update (arch_prec1.item(), arch_inputs.size(0)) arch_top5.update (arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger): # config. (containing some necessary arg) # baseline: The baseline score (i.e. average val_acc) from the previous epoch data_time, batch_time = AverageMeter(), AverageMeter() GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time() controller_num_aggregate = 20 controller_train_steps = 50 controller_bl_dec = 0.99 controller_entropy_weight = 0.0001 network.eval() network.controller.train() network.controller.zero_grad() loader_iter = iter(xloader) for step in range(controller_train_steps * controller_num_aggregate): try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) inputs = inputs.cuda(non_blocking=True) targets = targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - xend) log_prob, entropy, sampled_arch = network.controller() with torch.no_grad(): network.set_cal_mode('dynamic', sampled_arch) _, logits = network(inputs) val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) val_top1 = val_top1.view(-1) / 100 reward = val_top1 + controller_entropy_weight * entropy if prev_baseline is None: baseline = val_top1 else: baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward) loss = -1 * log_prob * (reward - baseline) # account RewardMeter.update(reward.item()) BaselineMeter.update(baseline.item()) ValAccMeter.update(val_top1.item()*100) LossMeter.update(loss.item()) EntropyMeter.update(entropy.item()) # Average gradient over controller_num_aggregate samples loss = loss / controller_num_aggregate loss.backward(retain_graph=True) # measure elapsed time batch_time.update(time.time() - xend) xend = time.time() if (step+1) % controller_num_aggregate == 0: grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0) GradnormMeter.update(grad_norm) optimizer.step() network.controller.zero_grad() if step % print_freq == 0: Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate) Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter) Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg) logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr) return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg def get_best_arch(xloader, network, n_samples, algo): with torch.no_grad(): network.eval() if algo == 'random': archs, valid_accs = network.return_topK(n_samples, True), [] elif algo == 'setn': archs, valid_accs = network.return_topK(n_samples, False), [] elif algo.startswith('darts') or algo == 'gdas': arch = network.genotype archs, valid_accs = [arch], [] elif algo == 'enas': archs, valid_accs = [], [] for _ in range(n_samples): _, _, sampled_arch = network.controller() archs.append(sampled_arch) else: raise ValueError('Invalid algorithm name : {:}'.format(algo)) loader_iter = iter(xloader) for i, sampled_arch in enumerate(archs): network.set_cal_mode('dynamic', sampled_arch) try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) _, logits = network(inputs.cuda(non_blocking=True)) val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5)) valid_accs.append(val_top1.item()) best_idx = np.argmax(valid_accs) best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] return best_arch, best_valid_acc def valid_func(xloader, network, criterion, algo, logger): data_time, batch_time = AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() with torch.no_grad(): network.eval() for step, (arch_inputs, arch_targets) in enumerate(xloader): arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # prediction _, logits = network(arch_inputs.cuda(non_blocking=True)) arch_loss = criterion(logits, arch_targets) # record arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update (arch_prec1.item(), arch_inputs.size(0)) arch_top5.update (arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return arch_losses.avg, arch_top1.avg, arch_top5.avg def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads( xargs.workers ) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger) search_loader, train_loader, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \ (config.batch_size, config.test_batch_size), xargs.workers) logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') model_config = dict2config( dict(name='generic', C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=bool(xargs.affine), track_running_stats=bool(xargs.track_running_stats)), None) logger.log('search space : {:}'.format(search_space)) logger.log('model config : {:}'.format(model_config)) search_model = get_cell_based_tiny_net(model_config) search_model.set_algo(xargs.algo) logger.log('{:}'.format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config) a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) params = count_parameters_in_MB(search_model) logger.log('The parameters of the search model = {:.2f} MB'.format(params)) logger.log('search-space : {:}'.format(search_space)) try: api = API(verbose=False) except: api = None logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] baseline = checkpoint['baseline'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict( checkpoint['search_model'] ) w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.return_topK(1, True)[0]} baseline = None # start training start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format(convert_secs2time(epoch_time.val * (total_epoch-epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) network.set_drop_path(float(epoch+1) / total_epoch, xargs.drop_path_rate) if xargs.algo == 'gdas': network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) logger.log('[RESET tau as : {:} and drop_path as {:}]'.format(network.tau, network.drop_path)) search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger) search_time.update(time.time() - start_time) logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) if xargs.algo == 'enas': ctl_loss, ctl_acc, baseline, ctl_reward \ = train_controller(valid_loader, network, criterion, a_optimizer, baseline, epoch_str, xargs.print_freq, logger) logger.log('[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}'.format(epoch_str, ctl_loss, ctl_acc, baseline, ctl_reward)) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo) if xargs.algo == 'setn' or xargs.algo == 'enas': network.set_cal_mode('dynamic', genotype) elif xargs.algo == 'gdas': network.set_cal_mode('gdas', None) elif xargs.algo.startswith('darts'): network.set_cal_mode('joint', None) elif xargs.algo == 'random': network.set_cal_mode('urs', None) else: raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo)) logger.log('[{:}] - [get_best_arch] : {:} -> {:}'.format(epoch_str, genotype, temp_accuracy)) valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger) logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint({'epoch' : epoch + 1, 'args' : deepcopy(xargs), 'baseline' : baseline, 'search_model': search_model.state_dict(), 'w_optimizer' : w_optimizer.state_dict(), 'a_optimizer' : a_optimizer.state_dict(), 'w_scheduler' : w_scheduler.state_dict(), 'genotypes' : genotypes, 'valid_accuracies' : valid_accuracies}, model_base_path, logger) last_info = save_checkpoint({ 'epoch': epoch + 1, 'args' : deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '200'))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo) if xargs.algo == 'setn': network.set_cal_mode('dynamic', genotype) elif xargs.algo == 'gdas': network.set_cal_mode('gdas', None) elif xargs.algo.startswith('darts'): network.set_cal_mode('joint', None) elif xargs.algo == 'random': network.set_cal_mode('urs', None) else: raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo)) search_time.update(time.time() - start_time) valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger) logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1)) logger.log('\n' + '-'*100) # check the performance from the architecture dataset logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(xargs.algo, total_epoch, search_time.sum, genotype)) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200') )) logger.close() if __name__ == '__main__': parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.") parser.add_argument('--data_path' , type=str, help='Path to dataset') parser.add_argument('--dataset' , type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') parser.add_argument('--search_space', type=str, default='tss', choices=['tss'], help='The search space name.') parser.add_argument('--algo' , type=str, choices=['darts-v1', 'darts-v2', 'gdas', 'setn', 'random', 'enas'], help='The search space name.') # FOR GDAS parser.add_argument('--tau_min', type=float, default=0.1, help='The minimum tau for Gumbel Softmax.') parser.add_argument('--tau_max', type=float, default=10, help='The maximum tau for Gumbel Softmax.') # channels and number-of-cells parser.add_argument('--max_nodes' , type=int, default=4, help='The maximum number of nodes.') parser.add_argument('--channel' , type=int, default=16, help='The number of channels.') parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.') # parser.add_argument('--eval_candidate_num', type=int, default=100, help='The number of selected architectures to evaluate.') # parser.add_argument('--track_running_stats',type=int, default=0, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') parser.add_argument('--affine' , type=int, default=0, choices=[0,1],help='Whether use affine=True or False in the BN layer.') parser.add_argument('--config_path' , type=str, default='./configs/nas-benchmark/algos/weight-sharing.config', help='The path of configuration.') # architecture leraning rate parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') parser.add_argument('--arch_weight_decay' , type=float, default=1e-3, help='weight decay for arch encoding') parser.add_argument('--arch_eps' , type=float, default=1e-8, help='weight decay for arch encoding') parser.add_argument('--drop_path_rate' , type=float, help='The drop path rate.') # log parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)') parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.') parser.add_argument('--print_freq', type=int, default=200, help='print frequency (default: 200)') parser.add_argument('--rand_seed', type=int, help='manual seed') args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, '{:}-affine{:}_BN{:}-{:}'.format(args.algo, args.affine, args.track_running_stats, args.drop_path_rate)) main(args)