##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 # python exps/LFNA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05 ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from log_utils import time_string from log_utils import AverageMeter, convert_secs2time from utils import split_str2indexes from procedures.advanced_main import basic_train_fn, basic_eval_fn from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from datasets.synthetic_core import get_synthetic_env from models.xcore import get_model from lfna_utils import lfna_setup def subsample(historical_x, historical_y, maxn=10000): total = historical_x.size(0) if total <= maxn: return historical_x, historical_y else: indexes = torch.randint(low=0, high=total, size=[maxn]) return historical_x[indexes], historical_y[indexes] def main(args): logger, env_info, model_kwargs = lfna_setup(args) w_container_per_epoch = dict() per_timestamp_time, start_time = AverageMeter(), time.time() for idx in range(env_info["total"]): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " " + need_time ) # train the same data historical_x = env_info["{:}-x".format(idx)] historical_y = env_info["{:}-y".format(idx)] # build model model = get_model(**model_kwargs) print(model) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) criterion = torch.nn.MSELoss() lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = MSEMetric() best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) model.analyze_weights() with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() metric = ComposeMetric(MSEMetric(), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset( env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)] ) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) results = basic_eval_fn(eval_loader, model, metric, logger) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " train-mse: {:.5f}, eval-mse: {:.5f}".format( train_results["mse"], results["mse"] ) ) logger.log(log_str) save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( idx, env_info["total"] ) w_container_per_epoch[idx] = model.get_w_container().no_grad_clone() save_checkpoint( { "model_state_dict": model.state_dict(), "model": model, "index": idx, "timestamp": env_info["{:}-timestamp".format(idx)], }, save_path, logger, ) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Use the data in the past.") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/use-same-timestamp", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, required=True, help="The hidden dimension.", ) parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--batch_size", type=int, default=512, help="The batch size", ) parser.add_argument( "--epochs", type=int, default=300, help="The total number of epochs.", ) parser.add_argument( "--workers", type=int, default=4, help="The number of data loading workers (default: 4)", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-{:}-d{:}".format( args.save_dir, args.env_version, args.hidden_dim ) main(args)